On the Usage of New JavaScript Features through
Transpilers: The Babel Case

Thiago Nicolini, Andre Hora, Eduardo Figueiredo

Department of Computer Science, UFMG, Brazil

{tnicolini, andrehora, figueiredo}@dcc.ufmg.br

Abstract

JavaScript applications have long been dealing with browser compatibility issues.
Due to the variety of browsers, operational systems, and versions, not all new JavaScript
features are available to users. Fortunately transpilers transform the new code syntax
into an older version, making the code compatible with a large number of browsers.
This study, which focuses on a largely used transpiler (Babel), aims to shed light on
how new JavaScript features are used and what major challenges developers face when
using them. We assess the top-1K JavaScript projects from GitHub, 108 Stack Overflow
questions, and the browser compatibility related to 18 recent JavaScript features. We
conclude that, without a transpiler, almost 14% of the web users could face a JavaScript

bug when landing on a website that uses a new JavaScript feature.

Keywords— JavaScript, Transpilers, Babel, Browser compatibility, Software maintenance

1 Introduction

Browser compatibility is still a challenge in modern software development. Even with two major
players (Chrome and Safari) representing more than 80% of the browser market share worldwide,
seven other browsers are responsible for 16% of the Web traffic.! This profusion of options for Web
browsing shows that the user has a lot of flexibility [7], but it also indicates that developers have to
be careful to avoid cross-browser compatibility (CBC) issues. Indeed, the CBC problem is almost
as old as the Web browser itself [8]. These issues are a major concern when developers want to use

the latest features of JavaScript.?

https://gs.statcounter.com/browser-market-share
’https://tinyurl.com/2p9f6673


https://gs.statcounter.com/browser-market-share
https://tinyurl.com/2p9f6673

10

15

20

25

30

35

JavaScript is a programming language that follows the ECMAScript specification, created
by the ECMA International [5], an association that defines the standards for technologies. The
ECMA Technical Committee 39 (TC39) is in charge of evaluating proposals for additional features
in the ECMAScript standard. The idea of a proposal is adding specification of new features that
improve the JavaScript development.?> To became a standard feature, the proposal has to pass
trough five stages process. When a feature is under the last two stages, browsers can implement
their specification to make it available to developers.

Every year the TC39 releases a new ECMAScript version but not all browsers provide full
compatibility to it. In order to use new JavaScript features, developers often rely on JavaScript
transpilers.® A transpiler is a tool that takes the source code and generates code written in another
target language, which is syntactically equivalent to the original source. Web developers rely on
JavaScript transpilers to use proposals even in the early stages. These tools convert the proposed
novel feature into an old JavaScript syntax. In this scenario, we can highlight the Babel transpiler
(https://babeljs.io). Babel is a transpiler used to convert ECMAScript 2015+ code into a backwards
compatible version of JavaScript. This NPM package is the most popular transpiler in the JavaScript
ecosystem with an average of 32 million weekly downloads.%

Despite the fact that the use of new JavaScript features is present in major open-source
projects (such as, VueJS, React, and JQuery), some questions remain unanswered. For example,
how frequently new JavaScript features are adopted in open-source projects? What challenges
developers face when using new JavaScript features? How compatible are the new JavaScript features
in current browsers? Answering those questions would provide the basis to better understand the
usage landscape of new JavaScript features and reveal the possible impact on current browsers.

In this paper, we propose a quantitative and qualitative empirical study to explore the usage
of new JavaScript features through the Babel transpiler. First, we analyze 1,000 popular JavaScript
open-software projects, searching for the use of Babel plugins that indicates the adoption of new
JavaScript features. Second, we assess the Stack Overflow question dataset to understand the issues
developers face when using these plugins. Third, we explore the Can I Use platform [3|, which
provides up-to-date browser compatibility for front-end Web technologies on desktop and mobile
browsers. We analyze the compatibility of the new JavaScript features across the most used Web

browsers (Chrome, Safari, Firefox, and Edge). We then propose the following research questions:

e RQ1: How often new JavaScript features are used in software projects?

e RQ2: What issues are faced by developers when using plugins to transpile the new JavaScript

features?

3https://tinyurl.com/4bf6yhab
“https://tc39.es/process-document
Shttps://tinyurl.com/3xxn5cpf
Shttps://www.npmjs.com/package/@babel/core


https://tinyurl.com/4bf6yhab
https://tc39.es/process-document
https://tinyurl.com/3xxn5cpf
https://www.npmjs.com/package/@babel/core

45

50

55

60

65

70

e RQ3: What is the impact of new JavaScript features on browser compatibility?

Major findings. We find that developers commonly rely on the Babel transpiler to handle new
JavaScript features. We detect that 73 projects (out of 1,000) use at least one new JavaScript
proposal (RQ1). We also detect that developers struggle to import and use the transpiler proposal
plugins into their projects (RQ2). Finally, we discover that new JavaScript features have an average
of 86% of compatibility across the most common browsers (RQ3). These findings suggest that the
transpilers play a relevant role in the modern Web development. Without them, the usage of the
new JavaScript features would be in jeopardy because 14% of the global users could face CBC issues
when accessing a website with these new features.

Contributions. The contributions of this paper are twofold. First, we provide a large empirical
study to better understand the usage and challenges of new JavaScript features. Second, we discuss
practical implications regarding the impact of new JavaScript features on browser compatibility.

Our dataset is publicly available at: https://zenodo.org/record/7250577.

2 Study Design

This section describes the study design to address RQ1, RQ2, and RQ3.

2.1 Mining projects that rely on Babel (RQ1)

To understand how frequent is the use and the browser compatibility of new JavaScript features, we
analyze the top-1K JavaScript open-source projects hosted on GitHub to search for projects that
use the Babel transpiler. We first select 1,000 JavaScript projects found on GitHub, sorted by the
number of stars, which is a proxy of popularity [1]. We rely on the GitHub search API,” querying
for JavaScript projects and sorting by the number of stars. This search provides 1,000 results, which
is the number of repositories analysed. We then search for projects using Node Package Manager
(NPM) to import Babel modules. For this purpose, we develop a script to go over all project’s
repositories searching for package.json, which records the project’s dependencies. Then, we parse
these package.json files, searching for all occurrences of the babel token. To avoid false positives,
we assess whether the package found is indeed a package from Babel documentation.® Lastly, to
ensure that the project is really using the Babel package (and it is not only importing it via the
package.json), we rely on the Depcheck? tool to check if a dependency is used in code. Specifically,
we randomly select 182 projects (95% confidence level and 5% confidence interval) and run the
Depcheck on those projects. We found that 98% of the projects that imports Babel modules are

indeed using them.

"https://tinyurl.com/34mkekhu
8https://babeljs.io/docs/en/
‘https://github.com/depcheck/depcheck


https://zenodo.org/record/7250577
https://tinyurl.com/34mkekhu
https://babeljs.io/docs/en/
https://github.com/depcheck/depcheck

75

80

85

90

95

100

105

2.2 Exploring StackOverflow questions (RQ2)

Next, we rely on the Stack Overflow Search API' to find the challenges developers face to adopt
a new JavaScript feature. Since these features are at the proposal level of the TC39 Committee
Process, the Babel plugins to transpile these new features into old JavaScript syntax have the
proposal prefix in their names. Thus, we use Stack Overflow API to search for all questions that
include the term babel/plugin-proposal. This pattern identifies all proposal plugins available in

Babel documentation.!!

This way, we find 125 questions that match the criteria. To filter out
false positives, we manually inspected each returned question. First, we check if a babel/plugin-
proposal term found in a question is indeed a package from Babel documentation. After, we check
if the question have the term plugin-proposal, but are related to another subject. For example,
the developer may have simply pasted the package.json file (with few occurrences of babel-plugin-
proposals), but ask about another dependency. After applying the filters, we remain with 108 valid
questions. To analyze the developer’s questions qualitatively, we rely on thematic analysis [4], which
consists in a procedure to identify, analyze, and report themes that are present in the data of
qualitative research. Thus, we aim to identify and record themes in textual documents, using the
following steps: (1) initial reading of the questions, (2) generating a first code for each question, (3)
searching for themes among the proposed codes, (4) reviewing the themes to find opportunities for
merging, and (5) defining and naming the final themes. The first three steps were performed by the
first author of the paper, while steps 4 and 5 were done together by all authors of the paper until

consensus was achieved. Thematic analysis is also used in the following two steps.

2.2.1 Grouping questions by development cycle phase

To understand in which phase of the development cycle developers face issues with transpilers
plugins, we use thematic analysis to group the questions in three categories. Project Setup:
when the question is related to import the plugin, setting up a development environment (e. g.,
Trouble Installing babel’s plugin-proposal-export-default-from). Development: when the question
is related to the plugin usage itself, with code examples, asking about syntax, or how to integrate to
existing code (e. g., How do I decorate an async method using Babel 7’s plugin-proposal-decorators
with an async function?). Build: when the question is related to publishing the application to the
Web, build and bundle errors (e. g., Compilation error when building ionic app). We found three
questions about testing. The first two were related to plugin importing, thus we grouped them into
the Project Setup phase. The third one was related to the usage of new JavaScript features in unit
testing code. Since it was related to the writing code process, we grouped it into the Development
Phase. Based on this classification, we aim to identify in which phase of development the transpiler

usage is more challenging.

Onttps://api.stackexchange.com
"Uhttps://babeljs.io/docs/en/plugins-1list


https://api.stackexchange.com
https://babeljs.io/docs/en/plugins-list

110

115

120

125

130

135

2.2.2 Classifying the questions in topics

To understand the major problem the developer is facing when using the proposal plugin, we classify
the questions in four topics. Test issues: questions related to a test suite not working properly due
to Babel (e.g., How can I enable decorators support when running tests with CRA 2.17). IDE miss
configuration: questions related to an error in an IDE /editor due to the plugin usage (e.g., Visual
Studio Code error messages and Babel plugins). Incorrect plugin importing: questions related to
how properly import plugins, dependency managers (like npm and webpack), and importing other
dependencies; (e.g., Add plugin-proposal-class-properties to create-react-app project). Plugin miss
usage: questions related to the plugin usage in general, like code syntax, and integration with

existing code (e.g., Babel plugin-proposal-decorators not working as expected).

2.3 Assessing browser compatibility (RQ3)

In this last analysis, we rely on the Can I Use platform [3] to assess the compatibility of the proposal
plugin with the most popular browsers. This platform provides up-to-date browser compatibility for
front-end Web technologies on desktop and mobile browsers [3]. It has data about the version of a
browser that supports a given feature and a global estimation (in percentage) about that feature.
For example, Arrow Functions [3]|, which became a JavaScript feature in the ES6 realease (2015),
has an estimate of 96.11% of global compatibility. This platform also indicates that the feature
became available in Chrome Desktop in the version 45. Although the platform already provides an
upfront useful data, unfortunately, it does not make it clear the total browser versions that support
JavaScript features.

To overcome this limitation, we develop a script to compute both (i) the total number of
browser versions and (ii) the versions that support JavaScript features based on the Can I Use data.
We are then able to assess the number of browser versions available and the number of versions that
supports the proposal features. For example, a browser X may have a total of 100 versions, but only
10 versions support a given JavaScript feature. Our final goal is to better understand to what extent
the transpiler plugins play a role in making the JavaScript releases available for the overall public.

We select all 30 available Babel plugins that are related to proposal functionalities (new
JavaScript features), which means the available plugins with the notation babel/plugin-proposal-
<plugin name>. Then, we check their compatibility rate in the Can I use platform [3]. This

compatibility rate is an estimation between the global internet traffic and the browser/version usage.

3 Results

This section describes the results of this research.



140

145

150

3.1 RQ1: Usage of New JS features

By mining the top-1K JavaScript projects, we find 1,135 occurrences of Babel plugins in 345 different
projects. Thus, we identify that close to 35% of the top-1k JavaScript projects on GitHub projects
rely on Babel transpilers in some way. The most common plugin occurrence is core (282 occurrences).
This is expected because this module has the main transpiler methods, like the transform which is
the method responsible for transform the source code.'?

We now focus on analyzing the most used proposal plugins, that is, the plugins that indicate the
usage of new JavaScript features. As summarized in Table 1, we found 144 proposal occurrences, with
16 distinct plugins being used by 73 projects. The most used plugin is Class Properties (54), which
transpiles class properties (such as constructor, static fields, and methods) into object properties
since object properties have better compatibility among browsers. The second most used plugin is
Object Rest Spread (29), which transpiles the spread operator ... into Object assigned properties.
We also identify the presence of Babel proposal plugins in some well-known JavaScript open-source
projects, such as VueJS and ReactJS. Overall, 7.3% (73 out of 1,000) of all studied projects use
a proposal plugin. Since other software projects rely on these widely popular frameworks as a

dependency, indirectly, proposals are vastly used in Web development.

Table 1: Frequency of Proposal Babel plugins.

Proposal Name #Frequency

plugin-proposal-class-properties 54
plugin-proposal-object-rest-spread 29
plugin-proposal-optional-chaining 11
plugin-proposal-nullish-coalescing-operator 10
plugin-proposal-export-default-from
plugin-proposal-decorators
plugin-proposal-export-namespace-from
plugin-proposal-numeric-separator
plugin-proposal-optional-catch-binding
plugin-proposal-do-expressions
plugin-proposal-function-sent
plugin-proposal-pipeline-operator
plugin-proposal-throw-expressions
plugin-proposal-async-generator-functions
plugin-proposal-function-bind
plugin-proposal-logical-assignment-operators

Nej

o= R NNDNDDNDDNWWOO

Total 144

2https://babeljs.io/docs/en/babel-core


https://babeljs.io/docs/en/babel-core

160

RQ1 summary: Babel has a relevant presence in the JavaScript ecosystem: 35% of the studied
JavaScript projects rely on the Babel plugins. Among those projects, we found that 73 rely
on a proposal plugin indicating the usage of a new JavaScript feature. The most commonly

used new JavaScript feature is Class Properties.

3.2 RQ2: Issues when using new JS features

Considering the 108 analyzed questions from Stack Overflow, we found 12 different proposal plugins.
The plugin-proposal-class-properties is the most common occurrence, representing 40% of the sample.
This result is somehow expected since this plugin is the most common proposal plugin, as presented
in RQ1. Figure 1 summarizes the distribution of questions by topic and phase. Incorrect plugin
importing (56) and Plugin miss usage (40) are the most common issues developers face. Next, we
have issues related to IDE miss configuration (8) and Test (4). Also, 58% of the analyzed issues are
related to the Development phase: we find a total of 48 questions regarding new JavaScript features
implementation, examples, and code syntax. We also find a large number of questions (37%, 40
questions) in the Project Setup phase. It indicates that developers are willing to use proposals in
their projects, but, they may be failing to set up these features. Lastly, issues are less common in the
Build phase. That can be explained because if developers are facing issues in the previous phases,

they probably do not reach the build phase.

B Project Setup M Development Build

Incorrect Plugin
importing 56
Plugin miss
usage 40
2
o
g
S IDE miss 8
configuration
Test 4
0% 25% 50% 75% 100%

Figure 1: Stack Overflow Questions by topic and phase.



170

175

180

185

Table 2: New JavaScript Features vs. Browsers Compatibility

st N Supported Desktop Versions Supported Mobile Versions Compatibility Rate (%)

(286 versions analysed) (14 versions analysed)
unicode-property-regex 161 (56%) 14 (100%) 94.32
object-rest-spread 130 (45%) 10 (71%) 93.48
async-generator-functions 123 (43%) 9 (64%) 93.25
optional-catch-binding 115 (40%) 10 (71%) 93.25
syntax-import-meta 113 (39%) 10 (71%) 93.23
json-strings 96 (34%) 14 (100%) 92.76
numeric-separator 85 (30%) 12 (86%) 91.79
nullish-coalescing-operator 69 (24%) 13 (93%) 90.86
optional-chaining 69 (24%) 12 (86%) 90.86
logical-assignment-operators 69 (24%) 14 (100%) 89.17
class-static-block 66 (23%) 14 (100%) 88.98
class-properties 63 (22%) 14 (100%) 88.57
syntax-bigint 60 (21%) 14 (100%) 76.69
export-default-from 7 (27%) 5 (36%) 75.44
export-namespace-from 77 (27%) 5 (36%) 75.44
private-methods 40 (14%) 6 (43%) 74.00
syntax-top-level-await 33 (12%) 6 (43%) 73.24
private-property-in-object 19 (7%) 4 (29%) 70.08
Average 81 (28%) 10 (70%) 85.86

RQ@2 summary: The major challenge to adopt a new JavaScript feature via the transpiler
plugins are related to incorrect plugin importing (56) and plugin miss usage (40). Moreover,

most of the questions are related to the development phase of the software life cycle.

3.3 RQ3: Browser compatibility

We found data for 18 out of the 30 available Babel proposal plugins. Since Can I use [3] is a
open source platform, it relies on the number of developers requests (on GitHub) to present data
of new JavaScript feature. We analyze information regarding 286 desktop browser versions, with
following distribution: 73 versions of Opera, 14 of Safari, 80 of Chrome, 8 of Internet Explorer, 91 of
Firefox and 20 of Edge. Furthermore, we analyse 14 versions of mobile browsers, with the following
distribution: 2 of Chrome Mobile, 2 of Firefox Mobile, 2 of Samsung mobile, and 8 of Safari mobile.

Table 2 presents the results by desktop versions, mobile versions, and the total of compatibility
rate of a given proposal plugin. Overall, we found that a new JavaScript feature has close to 86% of
compatibility across the browsers. Moreover, mobile browsers have a better compatibility rate than
desktop ones. The feature we identified as the most frequent on GitHub projects in RQ1 (class-
properties) has close to 88% of compatibility. This highlights the relevance of the transpiler plugin
when using this new feature. Making 12% of the global traffic unable to access the application due
to compatibility issues is certainly a major concern. Some older features like export-namespace-from
(ES2020) has a smaller compatibility rate (75.44%) when compared to newer features like numeric-
separator from ES2021 (91.79%). This may be explained by the complexity of the feature and how

browsers will interpret it.



190

195

200

205

210

RQ3 summary: Overall, a new JavaScript feature has 86% of compatibility across the

browsers. Mobile browsers have a better compatibility rate when compared to desktop ones.

4 Discussion and Implications

This section discusses implications for both practitioners and researchers based on our results.

4.1 For Practitioners

Novel empirical data on the usage of new JavaScript features. By assessing the Babel
adoption in the wild, we find new JavaScript features being used in 73 out of top-1K most popular
JavaScript projects (RQ1). This includes the usage by well-know open-source projects, such as React
and VuelJS. Since these frameworks are commonly used in other projects, it indicates that these new
features are indirectly present in a higher number of applications. Just to illustrate this scenario,
according to NPM data, React has 11,701,844 weekly downloads.'® We thus shed some light on the

usage of new JavaScript features via the usage of the Babel transpiler.

Guidelines to support the usage of proposal plugins. The major challenge when adopt-
ing a new JavaScript feature (52%) is related to how properly import a proposal plugin (RQ2).
This suggests that developers do want to use new features, leveraging compilers to address browser
compatibility. However, due to the possible lack of documentation, lack of knowledge, or even in-
compatibility with other dependencies present in the JavaScript Projects, programmers may struggle
to set up the feature in their projects, and, consequently, not use the new JavaScript feature. In this

context, guidelines can be proposed to aid developers in properly importing the proposal plugins.

4.2 For Researchers

Factors that influence the adoption of a new JavaScript feature. In RQ3, we have seen
that developers may adopt a newer JavaScript feature before adopting an older one. For example,
some features available since 2018 are not commonly used like the optional-chaining, which is part
of ES2020. In this scenario, researchers can investigate the factors that influence the adoption of a
new feature. This can, for instance, shed light on which type of features should be prioritized in the

upcoming JavaScript releases.

The practical benefits of using new JavaScript features. We detect that well-known software

projects rely on new JavaScript features (RQ1). Novel studies can focus on identifying the benefits

Bhttps:/ /www.npmjs.com /package /react



215

220

225

230

235

240

245

of the adoption of new JavaScript features. For example, one could compare the application perfor-
mance before and after the adoption. This type of study can contribute to attract early adopters

for new JavaScript features, helping to advertise their usage among JavaScript community.

5 Threats to Validity

In this study, we assessed the presence of Babel plugins in the top-1K star ranked JavaScript GitHub
projects. These projects are relevant projects, however, they may not represent the whole population
of JavaScript. We also focused on projects that rely on NPM as a package manager tool because
it is the most common tool for this purpose. Thus, if the project used another package manager,
it was not part of the scope of the paper. Regarding the categorization of the Stack Overflow
questions in RQ2, it is subjected to human bias in the classification. To overcome this possible
threat, we relied on thematic analysis [4]. Finally, by focusing on Babel made it possible to analyze
JavaScript transpilers from different data sources (GitHub, Stack Overflow, and Can I Use). We opt
for addressing Babel because it is the most common transpiler for JavaScript projects. However,

further research is necessary to address other transpilers.

6 Related Work

Mesbah et al. [8] defines how cross-browser issues impact Web software development. The authors
proposed an automated method for cross-browser compatibility testing Web applications. Guoquan
Wu et. al. [14] proposed a technique to detect cross-browser issues for JavaScript-based Web appli-
cations. Xu and Zeng [15] proposed a technique for statically analyzing cross-browser compatibility
problems. In this paper, we also explore browser compatibility, taking a deeper look on the adoption
of new JavaScript features.

Regarding transpilers, Kimura et. al. [6] proposed Escapin, a JavaScript transpiler for devel-
oping application programs that consume APIs and are deployed on cloud services to obtain new
business concepts by trial-and-error iterations. Sayed et al. [12] proposed a JavaScript transpiler,
which is an instrumented version with the flow-sensitive security monitor inlined. Our study focuses
on the usage of Babel, which is a largely used JavaScript transpiler by the developer community.

Finally, JavaScript has been the focus of software engineering research for long period [2, 9, 10,
13|. Similarly, the Stack Overflow dataset is a important source of data for researches nowadays [11].
In summary, the related literature tackles different browser compatibility issues and proposes distinct
tools to handle this issue. Other studies describe how transpilers work in general, with different
applicability and in distinct programming languages. However, none of them is focused on the new

JavaScript features and their impact on cross-browser issues.

10



7

Conclusion

This paper presented an empirical study on the usage of new JavaScript features and their impacts

on browser compatibility. We took a deeper look at a JavaScript transpiler, and how it allows a

developer to use new JavaScript releases even though these are not yet supported by the majority of

browsers. As future work, we plan to conduct qualitative study to better understand how and why

developers decide to use a new JavaScript release in their projects. We plan to conduct interviews

and surveys to address these questions. Lastly, we aim to understand how new JavaScript features

can be used in a faster and widely spread way.

References

1]

2]

3]

[4]

[5]

6]

7]

8]

19]

Hudson Borges, Andre Hora, and Marco Tulio Valente. Understanding the factors that impact
the popularity of github repositories. In International Conference on Software Maintenance
and Evolution, pages 334-344. IEEE, 2016.

Aline Brito, Andre Hora, and Marco Tulio Valente. Characterizing refactoring graphs in Java

and JavaScript projects. Empirical Software Engineering, 26(6):1-43, 2021.
Can I Use? https://caniuse.com, 2021. |Online; accessed October 2022].

D. S. Cruzes and T. Dyba. Recommended steps for thematic synthesis in software engineering.
In International Symposium on Empirical Software Engineering and Measurement, pages 275—
284, 2011.

ECMA International. https://www.ecma-international.org, 2021. [Online; accessed October
2022).

K. Kimura, A. Sekiguchi, S. Choudhary, and T. Uehara. A JavaScript Transpiler for Escaping
from Complicated Usage of Cloud Services and APIs. In Asia-Pacific Software Engineering
Conference, pages 69-78, 2018.

X. Li and H. Zeng. Modeling web application for cross-browser compatibility testing. In
International Conference on Software Engineering, Artificial Intelligence, Networking and Par-
allel/Distributed Computing), pages 1-5, 2014.

A. Mesbah and M. R. Prasad. Automated cross-browser compatibility testing. In International

Conference on Software Engineering, pages 561-570, 2011.

Romulo Nascimento, Eduardo Figueiredo, and Andre Hora. JavaScript API Deprecation Land-
scape: A Survey and Mining Study. IEEE Software, 39(3):96-105, 2022.

11



[10]

[11]

[12]

[13]

[14]

[15]

Katerina Paltoglou, Vassilis E. Zafeiris, N.A. Diamantidis, and E.A. Giakoumakis. Auto-
mated refactoring of legacy JavaScript code to ES6 modules. Journal of Systems and Software,
181:111049, 2021.

Riccardo Rubei, Claudio Di Sipio, Phuong T. Nguyen, Juri Di Rocco, and Davide Di Ruscio.
PostFinder: Mining Stack Overflow posts to support software developers. Information and
Software Technology, 127:106367, 2020.

B. Sayed, 1. Traoré, and A. Abdelhalim. If-transpiler: Inlining of hybrid flow-sensitive security
monitor for javascript. Computers & Security, 75:92-117, 2018.

F. Silva, H. Borges, and M. T. Valente. On the (un-)adoption of JavaScript front-end frame-
works. Software: Practice and Experience, 1:1-27, 2021.

G. Wu, M. He, H. Tang, and J. Wei. Detect cross-browser issues for javascript-based web
applications based on record/replay. In International Conference on Software Maintenance and
Evolution, pages 78-87, 2016.

S. Xu and H. Zeng. Static Analysis Technique of Cross-Browser Compatibility Detecting. In
International Conference on Applied Computing and Information Technology, pages 103—107,
2015.

12



	Introduction
	Study Design
	Mining projects that rely on Babel (RQ1)
	Exploring StackOverflow questions (RQ2)
	Grouping questions by development cycle phase
	Classifying the questions in topics

	Assessing browser compatibility (RQ3)

	Results
	RQ1: Usage of New JS features
	RQ2: Issues when using new JS features
	RQ3: Browser compatibility

	Discussion and Implications
	For Practitioners
	For Researchers

	Threats to Validity
	Related Work
	Conclusion

