
Received: Added at production Revised: Added at production Accepted: Added at production

DOI: xxx/xxxx

RESEARCH ARTICLE

Dual Analysis for Helping Developers to Find Collaborators Based
on Co–Changed Files: An Empirical Study

Kattiana Constantino | Fabiano Belém | Eduardo Figueiredo

1Computer Science Department, Federal
University of Minas Gerais, Belo
Horizonte/MG, Brazil

Correspondence
*Corresponding Kattiana Constantino.
Email: kattiana@dcc.ufmg.br or
kattiana@gmail.com

Summary

Software developers must collaborate at all stages of the software life-cycle to cre-
ate successful complex software systems. To enable this collaboration, social coding
platforms, e.g., GitHub, include an increasing number of tools to support collabo-
ration. However, for large projects with hundreds of dynamic developers, such as
several successful open–source projects, it can be complex to find developers with the
same interest and familiarity and thus, gain suitable collaborations and new insights.
In this context, resources and efforts may be wasted, discouraging many developers
from contributing. Moreover, it can be costly to manage many contributions, which
is another challenge for the maintainer who wants to take advantage of this small,
timid, but valuable contribution made by a volunteer developer in a short time. In
this context, this paper presents an empirical study aiming to evaluate two strate-
gies to recommend collaborators based on co–changed files. Inspired in the TF–IDF
(Term Frequency–Inverse Document Frequency) weighting scheme established in
the Information Retrieval field, these strategies first estimate the importance of rele-
vant files modified by developers and use these estimates to represent each developer
“profile”. As a second step, they estimate the similarity between developers using
the Cosine metric, providing top-ranked developers according to this measure as
recommendations. We evaluated these strategies based on an extensive survey with
102 real–world developers. We observed that developers have interest and familiar-
ity with the co–changed files for all strategies evaluated. These considerations are
of relevance because many opportunities for contributions to the project are linked
to coding. Thus, theses results may indicate one less barrier for improving collabo-
ration among developers. Overall, the strategies present an acceptance rate of up to
81%, contributing to the discovery of further collaborators.

KEYWORDS:
Collaborative software development; Collaboration in software development; Developer recommenda-
tion; Distributed collaboration.

2 Kattiana Constantino ET AL

1 INTRODUCTION

Successful software projects require appropriate collaborators interacting with each other across the entire development life-
cycle. Contributors who enjoy the work or feel an obligation to the project are more likely to remain than those driven by
personal interest1,2. Thus, it is necessary to offer proper support for contributors to make quality contributions. This individual
experience can be one of the keys to retain the contributor for the short or long-term in the project3,2,4,5,6,7. Unfortunately, for
social coding platforms, e.g., GitHub1, it is still challenging to identify a suitable collaborator to strengthen their ties and improve
the engagement and quality of contributions. One of the reasons for this problem is that reliable information for identifying the
collaborator is often not readily available for users8,9,10.

Therefore, although finding the suitable developer to form a team, a partner or a mentor is not a new problem, this subject
still finds a lot of space with the growth of social coding platforms, such as GitHub, and their impact on open–source software
projects. Finding suitable developers also call the attention of several researchers interested in verifying or identifying what
factors may impact collaborations, knowledge sharing, or strengthening the ties among project developers9. Oliveira et al.11,12

identified developers with expertise in specific libraries from GitHub. Other previous work also explore social and coding activi-
ties to recommend developers for different purposes in software development projects, as recommending a core developer8,10,13,
or the most appropriate developer to integrate a pair of branches14. However, previous work still lacks empirical knowledge on
the effectiveness of strategies based on co–change files to indicate suitable collaborators in software projects.

This paper presents an empirical study aiming to evaluate two developer recommendation strategies based on coding activities,
especially in co–changed files, that is, modifications made by developers on the same file. These sets of files can indicate
that developers have interests and familiarity with specific part of the project, impacting directly on collaborative work among
developers. Thus, we considered the co–changed files to strengthen the ties among developers8,10. To extract these co–changed
files, for STRATEGY 1, we considered the number of commits. For STRATEGY 2, we used the number of changed lines of code
(LOC).

In order to evaluate these recommendation strategies, we mined data from GitHub public repositories and surveyed 102 devel-
opers from these repositories. As a result, we could observe that developers have a similar interest and are familiar with the
co–change files. These considerations are of relevance because many opportunities for contributing to the project are linked to
coding tasks15,16. Thus, they may indicate one less barrier for improving collaboration among developers of the project. More-
over, the acceptance rates of the GitHub surveyed developers are 80% and 65% for STRATEGY 1 and STRATEGY 2, respectively.
We also analyzed the combination of both strategies that presented an 81% acceptance rate. Furthermore, these results provide
valuable insights for the future creation of systems that strengthen the ties of online collaborative communities.

Our main contributions can be summarized as follow.

1. We perform an empirical study to evaluate recommendation strategies based on co–changed files to find collaborators.
We emailed 1,113 developers from 50 public projects hosted on GitHub. We have a response rate around 9%. In total, 102
real-world developers answered the survey;

2. We provide insights into the preferences of collaborators and encountered opportunities to improve the collaborations
based on their similar interests in collaborative tasks;

3. We propose COOPFINDER, a visual and interactive tool that implements the two strategies (STRATEGY 1 and 2) to connect
collaborators based on a set of files of their interest.

Our comprehensive replication package is available online for future replications/extensions17. The remainder of this paper is
organized as follows. Section 2 motivates this paper and presents the problem statement. Section 3 presents the two recommen-
dation strategies based on co–changed files. Section 4 describes the study settings. Section 5 reports and analyzes the results of
this study. Section 6 reports a qualitative analysis and presents an overview of the tool support. In Sections 7 and 8, some threats
to the study validity and related works are discussed. Finally, we end this paper with some concluding remarks and discussing
directions for further work (Section 9).

1https://github.com/

Kattiana Constantino ET AL 3

2 MOTIVATION AND PROBLEM STATEMENT

This section presents a motivating scenario and defines the problem addressed in this work.

2.1 Motivating Scenario
Let’s consider two hypothetical situations. First, Mary is a core team member in an open–source software (OSS) project. She
would like to have more contributors to develop new features, enhance, and maybe help managing the project. Mary also knows
that many developers made the last contribution a long time ago or never contributed to the project again. Thus, she decided to
promote an event to encourage the engagement of these temporarily inactive developers or attract new developers. Moreover,
Mary realizes that it would be interesting for the project if active developers motivate the others to contribute again to the project
or to make their first contributions. The chances of engagement and assertive contributions would be greater.

Joseph is a young developer and a volunteer in an OSS project in the second hypothetical situation. He has made a few
contributions to the project. For example, he was recently asked to design a new feature for a project hosted on GitHub. However,
Joseph is not familiar with the project. Thus, he needs some help. Perhaps he could find another developer to discuss various
design ideas to have new insights. Therefore, Mary and Joseph look for the solution for their problems. In other words, they want
to find other developers with the same interests in the project. That is, developers prefer or are familiar with specific parts of the
code, being able to make contributions regarding these parts. Consequently, they contribute to the engagement in the project as
a whole and enhance the opportunities for collaborations.

Although Mary and Joseph are hypothetical cases, Figure 1 shows a concrete example of a GitHub project in which a core
member called five other developers (three core and two casual developers) to help him with an issue2. Probably, the post author
thought that the work of these developers would be relevant to this issue; thus, the author mentioned (@)<developer> to join
in the discussion. However, for some reason, none of them answered the request. Hence, this real example leads us to think
about one of our general questions: although they are members of the project, would they be the most appropriate and interested
developers to help the post author?

Figure 2 presents a second part of the same example. After one day, another developer different from the five called ones
offered to help. Afterward, the issue author offered to code together or to help this developer as a mentor. By observing this
second situation, we could wonder: since the core members are overloaded, what other developers could be called upon to work
together? After a few days, that issue was closed. Despite the enthusiasm of the issue author to help in what the new developer
needed, there is no evidence that the collaboration actually happened. There was no record of commits on the new developer
fork. Moreover, there is no evidence that any other developers helped the core member to solve that issue of this project.

2.2 Problem Statement
Previous work has shown that developers usually prefer to request collaboration from core team members, who are supposed
to have sufficient motivation, knowledge, and experience in the project8,18. However, based on other prior studies, core team
members may be overwhelmed and, as a result, they may not provide collaborative support promptly19,20,21. Moreover, other
experienced developers, who are not part of the core team, could be better used by the project. In other words, all collaboration
is essential for the sustainability of the project22. Hence, all contributions should be valuable and encouraged23,24,25.

Previous work also mentioned that the lack of some roles that compose the core team, such as maintainers, supporters, review-
ers, and others, impacts the sustainability of the project13,14. Another impact on the project is related to developer turnover. For
instance, a small group of developers may be overloaded and centered on the project information and knowledge26,27. Moreover,
other developers may be being underused, even scarce, or with restricted access to information due to limited knowledge sharing
opportunities (e.g., collaborations, discussions)28. All of the issues raised above are on how the community of developers relate
to each other. Moreover, how these relationships impact positively or negatively on the sustainability of the software project and
product. These situations also lead us to question: how to balance and optimize collaboration among project developers?

2https://github.com/okfn-brasil/serenata-de-amor/issues/447

4 Kattiana Constantino ET AL

maintainer

core dev. developer developerdevelopercore
dev.

maintainer

FIGURE 1 Core member called other core developers to help with an issue.

maintainer

maintainer

new developer

FIGURE 2 A different developer offered to help with this issue.

3 STRATEGIES OF RECOMMENDING DEVELOPERS

This section presents the details of two recommendation strategies for helping developers to find other collaborators with sim-
ilar interests and familiarity based on their co–changed files. In our context, we consider a co–changed file as the history of
modifications made by two developers on the same file.

Even though developers face some barriers, they are generally still willing to collaborate with the project, mainly whether
they are familiar or interested in a specific part of code or the whole project. Thus, we are using the criterion of their interest
or familiarity with co–changed files to strengthen or create new ties among developers to improve the opportunities for collab-
oration and engagement in the project. For example, a developer trying to fix an issue on network security may be interested
in other developers familiar with similar problems. Alternatively, a developer interested in data science may pay attention to
developers who are experts in building models for statistical analysis in the project. Another example is when developers fork
the project for their specific interest. Since they became familiar with the project, when customizing it, they could be potential
new collaborators, although their initial intention was not to participate in the project. They could change their mind with some
interaction with the other members. Thus, the activities of developers around certain files may reflect their interests and exper-
tise in the project. As a result, if a set of files are relevant in satisfying the same interest and familiarity, it is most likely that
similar groups of developers may work together on related or other tasks. Thus, we can improve the interaction between such
developers via their code activities.

These strategies are inspired by two previous works8,10. We adapted the matrix-based computation of the former to support
recommendations using different code activity information, specifically co–changed files. We extended the latter to recommend
not only mentors, but also all active collaborators of the project that need some help. Figure 3 presents an overview of the

Kattiana Constantino ET AL 5

Extracting name of changed files
based on the number of commits

Extracting name of changed files
based on the number of lines of code

modified (additions and deletions)

Source Feature Extraction Changed File Scoring
(TF-IDF Algorithm) (Cosine Similarity Algorithm)

Developer
Recommendations

1

2 1
2 3

1
2 3

FIGURE 3 Overview of recommendation strategies.

steps needed to recommend developer to developer in the development project. The strategies to connect them are based on
co–changed files relevant to developers. That represents the part of the project that the developers are interested in and familiar
with, as presented in Figure 3. We exploit Information Retrieval (IR) techniques29 to depict developers based on the files they
edit. Each step of the general recommendation strategy presented in Figure 3 can be described as follows.

FEATURE EXTRACTION. GitHub is a social coding platform built on top of the GIT version control system and supports the
fork & pull model. To define this model, developers make a copy of the original repository and change the project in their copies.
When these changes are ready, they can (or not) submit them back into the original repository by means of a pull request. We
assume that two developers are likely changing the same set of files if they have similar interests in the software development
project (i.e., they are interested in and familiar with the same part of the project). Thus, we want to determine the similarity
of interest among developers of a project. For instance, two developers (Developer 1 and Developer 2) modified the File𝐴, we
assumed that they have interests in File𝐴. If only Developer 3 modified the File𝐹 , it means that only Developer 3 is interested in
File𝐹 . We can also have the case that all developers are interested in File𝐶 , because all of them modified this file.

To extract these changes, we used the following metrics: Number of commits, used in STRATEGY 1, calculates the number
of times a developer has modified a file. Number of changed lines of code (LoC), used in STRATEGY 2, calculates the sum of
the number of code lines added and removed in a specific file that the developer works on. Both aforementioned metrics are
calculated considering the whole life time of the project.

Strategies 1 and 2 may provide different (and thus complementary) results, as we will see in Section 5. This motivates us to
evaluate the joint strategy that aggregates the results of the other two strategies. For both strategies, we extracted these changes
from the original repositories and their contributing forks. That is, we collected information from both merged and non–merged
changed files.

CHANGED FILE SCORING. Once we know which set of files developers are interested in or familiar with, we need to know
how important each file is for each developer, as presented in Figure 3. To this end, we use an algorithm called Term Frequency -
Inverse Document Frequency (TF-IDF)30 to get the rank of relevant files by developers. The definition of the algorithm is adapted
for our context. Figures 4 and 5 present how this algorithm works as a “relevance scoring” for Strategies 1 and 2, respectively.

Term Frequency (TF) assigns a higher relevance score to the most frequent terms (words) in a text document31. In our context,
we consider a term as a source code file in the project. Thus, for STRATEGY 1, TF means the number of times the developer
changed a file in the project (number of commits). For STRATEGY 2, TF is defined as the total number of code lines added and
removed in the file that the developer modified (changed LoC). Before generating TFs, we perform a pre-processing step aiming
at eliminating “stop words”. In our context, it means that we eliminate all executable files (.exe) or compressed files (e.g. .zip
and .rar) when these kinds of files were in the project. Every file has its TF calculated according to the strategy adopted. For
instance, Developer 1 has modified File𝐴 in three commits (Figure 4). For each commit, the developer made one change that
can be one addition or one removal of lines of code. Thus, the total changed lines of code count are 3 (Figure 5). In this example
related to Developer 1, the TF𝐷𝑒𝑣1 results for File𝐴 is the same for both strategies. In the second example, Developer 2 has
changed File𝐵 in only one commit (Figure 4). In this commit, Developer 2 made three modifications that can be two additions
and one deletion of lines of code. (Figure 5). Thus, the TF results for File𝐵 related to Developer 2 are TF𝐷𝑒𝑣2 = 1 (Figure 4) and
TF𝐷𝑒𝑣2 = 3 (Figure 5), for STRATEGIES 1 and 2, respectively.

Inverse Document Frequency (IDF) measures how relevant is a file in a project. While computing TF, all files (“terms”) are
considered equally important. However, we know that some specific files may appear many times but they have little importance

6 Kattiana Constantino ET AL

Term

FileA

FileB

FileC

FileD

TF-IDFDev1 TF-IDFDev2 TF-IDFDev3 TF-IDFDev4

0.677174 0.551939 0.450066 0.571034

0.682061 0.833884 0 0

0.276094 0 0.825743 0.698457

0 0 0.339985 0.431367

TFDev1 TFDev2 TFDev3 TFDev4

3 1 2 2

2 1 0 0

1 0 3 2

0 0 1 1

ni

4

2

3

2

IDFi

1

1.51082562

1.22314355

1.51082562

Developer 3

FileD

FileC,FileC, FileC

FileA, FileA

Developer 1
FileA, FileA, FileA

FileB, FileB

FileC

Developer 4

FileD

FileC,FileC
FileA, FileA

Developer 2

FileB

FileA

N = 4

FIGURE 4 TF-IDF results for STRATEGY 1. Terms means the set of files of the project. N means the total number of developers.
IDF determines the weight of rare file across all sets in the project.

Term

FileA

FileB

FileC

FileD

TF-IDFDev1 TF-IDFDev2 TF-IDFDev3 TF-IDFDev4

0.214763 0.935494 0.329444 0.326566

0.432626 0.353342 0 0

0.875620 0 0.671596 0.466010

0 0 0.663644 0.822307

TFDev1 TFDev2 TFDev3 TFDev4

3 12 3 6

4 3 0 0

10 0 5 7

0 0 4 10

ni

4

2

3

2

IDFi

1

1.51082562

1.22314355

1.51082562

Developer 3

FileD(4)
FileC(1),FileC(2), FileC(2)

FileA(2), FileA(1)

Developer 1
FileA(1), FileA(1), FileA(1)

FileB(3), FileB(1)

FileC(10)

Developer 4

FileD(10)

FileC(3),FileC(4)

FileA(4), FileA(2)

Developer 2

FileB(3)

FileA(12)

N = 4

FIGURE 5 TF-IDF results for STRATEGY 2. For each changed file, the value of the number of changed LoC is in parentheses.

in the project to differentiate developer interests. Thus, we need to weigh down the frequent files while scaling up the rare ones.
Towards this goal, IDF is calculated as log of the total number (N) of developers divided by the number of developers that
modified the file. IDF = log ((𝑁 + 1)∕(𝑛𝑖 + 1)) + 1 3. For instance, all developers modified File𝐴, thus IDF𝐹 𝑖𝑙𝑒𝐴 = 1 (Figures 4
and 5). Differently, only two developers have modified File𝐵 , thus IDF𝐹 𝑖𝑙𝑒𝐵 = 1.51082562.

Finally, we combine both metrics described above by calculating their product (TF*IDF) for each file and each developer
in the project. The resulting TF-IDF vectors are then normalized by the Euclidean norm. The final result is a rank of files by
developer for each strategy, and consequently among developers. For instance, considering STRATEGY 1 for Developer 2, File𝐵
is more relevant than File𝐴 (Figure 4). However, in STRATEGY 2, the rank of files changed, then File𝐴 became more relevant
then File𝐵 . Consequently, it changed the relevance of files for the developers. For example, in STRATEGY 1, File𝐵 was relatively
more relevant for Developer 2 than for Developer 1 (Figure 4), while STRATEGY 2 provides the opposite result (Figure 5).
Another example, for STRATEGY 1, the rank of files to Developer 4 was File𝐶 , File𝐴, and File𝐷 (Figure 4). In STRATEGY 2, this
rank changed to File𝐷, File𝐶 , and File𝐴. When comparing with other developers, this result also changed the level of relevance
of File𝐴 for Developers 3 and 4.

DEVELOPER RECOMMENDER MODEL. After representing developers in a rank of relevant files (the vector space model), we
can measure their similarity using the cosine metric that are widely used32,33,34 because of its potential to quantify the similarity
of two objects35. Therefore, given two vectors 𝐴 and 𝐵 representing two developers, the cosine similarity is calculated using
a cross product of these two vectors. The idea of this measure is that the similarity between developers A and B is higher the
more files they have in common, and with similar weights. This measure is used in both strategies.

𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝐴,𝐵) = 𝐴𝐵
√

𝐴2
√

𝐵2
(1)

To summarize, the focus of these developer recommendation strategies is on the contribution based on co–changed files. For
STRATEGY 1, we used the number of commits in a code file. However, this metric may suffer from the following drawback.
A developer who makes frequent small commits in a code file is considered “more engaged” with the given file than another
developer who makes infrequent large commits. To minimize this issue, STRATEGY 2 uses the “LOC metric” by accounting

3This formula adds “1” to the numerator and denominator to prevents zero divisions.

Kattiana Constantino ET AL 7

for added or deleted code lines in a project file. By this metric, we may capture the volume of changes reflecting the level of
engagement and interest in the file. For both strategies, we do not address the quality of contributions, i.e., we do not distinguish
whether some contributions are more or less relevant for the project. Table 1 summarizes the input (in) and output (out) of each
strategy.

TABLE 1 Summarizing the developer recommendation strategies.

Strategy 1 Strategy 2

in number of commits number of changed LoC
out ranked developers ranked developer

4 STUDY DESIGN

This section presents the design of a survey study to evaluate the developer recommendations based on co–changed files
(STRATEGY 1 and STRATEGY 2). Data were collected using an opinion survey. We describe below our goal, research questions,
formulated hypotheses, and the research method.

4.1 Goal and Research Questions
We set the goal of our study using the Goal/Question/Metric template (GQM)36. Following such a goal definition template, the
scope of our study is outlined below.

Analyze STRATEGY 1 and STRATEGY 2
for the purpose of evaluation
with respect to precision of recommendations
from the point of view of developers
in the context of developer recommendations based on co–changed files in the open–source environment.

To achieve our goal, we based our evaluation method on the following research questions.
RQ1 - Are developers interested in code changed by recommended developers? First, we aim to know the interests of

surveyed developers on files changed by other developers in the same project. The lack of interest in the code of the project may
be one of the reasons why developers do not participate or leave the project, impacting directly on collaborative work among
developers.

RQ2 - Are developers familiar with code changed by recommended developers? With RQ2, we aim to know the familiarity
of surveyed developers with files changed by other developers in the same project. Developers who know about the specific parts
of the project can provide the necessary technical expertise that a project needs and encourage other developers to contribute to
the project.

RQ3 - How precise are the recommendation strategies based on co–changed files? With RQ3, we aim to know the precision
of each recommendation strategy (STRATEGY 1 and STRATEGY 2). We answered this RQ3 with the surveyed developers that
declared the preference to work strictly in collaboration with other developers.

RQ4 - Do the recommendations contribute to the discovery of potentially new collaborators? In recommendation sys-
tems, it is consensus among researchers that the correctness of recommendations is not enough to guarantee the effectiveness and
utility of recommendations37,38. One important aspect that must be considered is the recommendation novelty, usually defined
as the ability to recommend items that are different from what is known. Therefore, with RQ4, we aim at verifying if the rec-
ommendations constitute new possibilities for collaborations in the project. That is, collaborators that the target developer is not
likely to be aware of.

8 Kattiana Constantino ET AL

4.2 Hypotheses Formulation
We defined below hypotheses for RQ1 aiming to verify which strategy (STRATEGY 1 or STRATEGY 2) is the most effective
to recommend, to a given target developer 𝑑, other developers with similar interests in co-changed files. To answer RQ1 we
evaluated the effectiveness of the strategies in terms of the agreement measure. That is, the percentage of the agreement of the
GitHub developers with recommendations. Thus, RQ1 was turned into the null and alternative hypotheses as follows.

H0: There is no statistically significant difference in agreement related to interests in co–changed files among developers identified by
strategies 1 and 2.
H𝑎: There is statistically significant difference in agreement related to interests in co–changed files among developers identified by
strategies 1 and 2.

We coined the following two hypotheses for RQ2 to investigate which strategy (STRATEGY 1 or STRATEGY 2) is the most
effective to recommend, to a given target developer 𝑑, other developers with similar familiarity with co-changed files?

To answer RQ2 we also evaluated the effectiveness of the strategies in terms of the agreement measure.

H0: There is no difference in agreement related to familiarity with co–changed files among developers identified by strategies 1 and 2.
H𝑎: There is difference in agreement related to familiarity with co–changed files among developers identified by strategies 1 and 2.

Finally, we also designed hypotheses for RQ3: which strategy (STRATEGY 1 or STRATEGY 2) is more effective to recommend
collaborators. As mentioned, to answer RQ3, we evaluated the effectiveness of the strategies in terms of the precision mea-
sure; that is, the percentage of the acceptance answers according to surveyed GitHub developers. Thus, the null and alternative
hypotheses are:

H0: There is no statistically significant difference in precision for developer recommendations among strategies 1 and 2.
H𝑎: There is statistically significant difference in precision for developer recommendations among strategies 1 and 2.

Let 𝜇 be the average amount of agreement (RQ1 and RQ2) or precision measure (RQ3). Thus, 𝜇1 and 𝜇2 denote the average
amount of agreement or accepted answers by surveyed developers using exclusively either STRATEGY 1 or STRATEGY 2,
respectively. Then, the aforementioned set of hypotheses can be formally stated as:

H0: 𝜇1 and 𝜇2 are statistically tied
H𝑎: 𝜇1 and 𝜇2 are not statistically tied

To test all aforementioned hypotheses, we considered 95% confidence levels (𝜌 = 0.05).
PRECISION MEASURE. Precision measures the correctness of the recommended strategies, i.e., the ratio of correctly recom-

mended developers by the total developers in the recommendation list. To compute precision, we need to know the values of true
positives (TP) and false positives (FP). In our context, TP and FP quantify the number of correctly and wrongly recommended
developers by the strategy evaluated by the surveyed developers (the oracle), respectively. The computation of precision is: Pre-
cision = TP / (TP + FP). Precision varies from 0 to 1, and higher values are related to better correctness. In this work, given the
time consuming task of manually verifying the relevance of recommendations, volunteer participants were able to evaluate only
one recommendation. Thus, for individual recommendations, the obtained values for precision are either 0 or 1. However, we
evaluate the recommendation effectiveness in a collective perspective, in which the average precision over all recommendations
gives us the expected proportion of top-1 recommendations that are considered relevant by the users4.

4.3 Research Method
To answer the research questions, we planned and performed a survey study, as shown in Figure 6. In summary, we select
public projects hosted on GitHub. We used GitHub REST API version 3 to retrieve data from the original repositories and

4Another measure to evaluate the effectiveness of recommendations is the Recall, which measures the completeness of the recommendations, defined by the ratio of
correctly recommended developers over the total number of developers which are relevant for the target user (Recall = TP / (TP + FN), where FN is the amount of false
negative recommendations). However, the already mentioned costs in the evaluation constitute a very limiting factor to compute recall. Thus, we focus our evaluation on
the precision measure, leaving the recall analysis as future work.

Kattiana Constantino ET AL 9

their contributing forks. Additionally, based on the two recommendation strategies, we chose the surveyed participants and
their similar developers based on co–changed files; we used both merged and non–merged commits. Each participant analyzed
only one recommended developer (the recommendation in the first position of the rank) of one (randomly chosen) strategy.
Furthermore, we evaluated both strategies in a single inspection, when they produced the same top-1 recommendation. The
survey study was executed under the following steps (see Figure 6).

Pilot Study Opinion Survey

Participant C 1 and 2

Top-1

Recommended

 Developer

Strategy 1

Strategy 2

Surveyed

Developer

Participant A

Participant B

Data AnalysisPopulation Sampling

FIGURE 6 Research method overview.

PILOT STUDY. We executed a pilot study in order to validate the study protocol and the questionnaire. For the pilot study,
we sent 158 invitation emails to answer our survey. In total, 10 participants completed the survey in our pilot study. The main
improvement from the pilot study was related to one question in the questionnaire. Initially, we asked participants about their
current collaboration practices (questionnaire item SQ1, in Table 4). However, during the pilot study, we noticed that the current
work practice may not reflect the participant preferences. Therefore, we added another question to the questionnaire (SQ4).
Another change is related to the number of recommended developers presented for each participant. First, we started with
three developers for each participant. However, we realized that it turns the questionnaire too long and very complicated for
participants to answer (e.g., low response rate). Thereby, we decided to reduce for one recommended developer per participant.
For the same reason, we decided to present only one strategy (either based on the number of commits or based on the number of
changed LoC) for each participant, randomly. Finally, for comparison purposes, we also surveyed when these two recommenders
provided the same top1-developer recommendation. In Section 5.6, we present this result that could help us to find some insights
from participants to merge or improve the developer recommendation strategies.

POPULATION SAMPLING. The target population sample is composed of developers working in contributing public forks of
open–source projects hosted on GitHub, as presented in Figure 6. Therefore, we first selected candidate open–source projects
from GitHub according to the following criteria: they must be public, have at least 1K stars, and must be active with ongoing
development. For survey purposes, we considered projects with at least 50 contributors and avoided large projects, for instance,
projects with more than 30K forks or 10K commits. This yielded 3,464 repositories, from which we randomly selected 50.
The selected repositories include many famous and popular projects, such as ECLIPSE DEEPLEARNING4J 5 (Version 1.0.0, 12K
stars, 5K forks and Java as predominate language), PANDAS 6 (Version 1.1.3, 31K stars, 13K forks and Python as predominate
language), and VUE 7 (Version 3.0, 26K stars, 4K forks and TypeScript as predominate language). Afterward, through the GitHub
REST API, for both strategies, we collected all merged and non–merged commits of the whole life of the project and its forks.
Besides, we automatically collected the name and public emails of project developers with at least four accepted commits (with
their last commit within the last year). Based on the last commit date, we try to guarantee that the developers may be currently
involved or still familiar with the project39,40. This filtering of the participants was a matter of evaluation methodology, to have
enough data to evaluate the strategies.

PARTICIPANTS SELECTION. We had tree groups of participants, for STRATEGY 1, STRATEGY 2, and JOINT STRATEGY. We
sent an equal number of inviting emails for GitHub developers, totalizing 1,113 e-mails. Besides, we invited developers that had
common recommendations in both strategies. We had an overall response rate of around 9%. In total, 130 participants completed

5https://github.com/eclipse/deeplearning4j
6https://github.com/pandas-dev/pandas
7https://github.com/vuejs/vue-next

10 Kattiana Constantino ET AL

TABLE 2 Completely randomized design.

Strategy 1 Strategy 2 Joint Strategy Total
Participants that answered the survey (#) 37 31 62 130
Participants eligible for this analysis (#) 32 23 47 102

the survey. We analyzed their responses, and filtered incomplete responses, excluding 12 participants. For this analysis, we also
excluded the participants that claimed the preference to work independently because no recommendation strategy would work
for them (16 participants). Table 2 summarizes the number of participants assigned in each strategy completely randomized. The
first line of the table corresponds to all participants who completed the survey. The second line of the table corresponds to the
participants eligible for the analysis of this work. All subjects signed a consent form before participating in the study. All subjects
already had prior experience with open–source software development. Each subject evaluated only one strategy. We nicknamed
the participants as follows: (i) S1.1 to S1.32 worked with STRATEGY 1, (ii) S2.1 to S2.23 worked with STRATEGY 2, and (iii)
S3.1 to S3.47 worked with recommendations common to both strategies (joint strategy), which means these two recommenders
provided the same top1-developer recommendation. Our goal is to use these nicknames while keeping the anonymity of the
participants, separating them by the strategy since we did not repeat participants in the study.

Survey Demographic Information. Again, through the GitHub REST API, we collected the public and available demographic
information of the survey participants in their GitHub profiles. Table 3 shows demographic information, such as the number of
public repositories they have been interested in following or participated in and the number of contributions in the last three
years. Likewise, they have a median of 29 public repositories and 804 commits. Moreover, we mined the public and available
roles and technologies information self–declared by participants in their bios. The roles are Compiler Developer, Community
Team Manager, Data Engineer, Data Scientist, Front-End Developer, Maintainer, Programmer, Researcher, Software Engineer,
Software Developer, Tutor, UI Designer, and Web Developer. The languages used are Java, JavaScript, MATLAB, Python, Rust,
and TypeScript. Besides, the technologies they use involve Apache Framework, API maker, BootStrap, Build tools, CLI, Dataviz,
Gatsby, Git, JIT compilation, B, Node.js, Plugins, and React/Redux. We also collected the number of followers and following as
indicators of social interaction and popularity of the participants. They have a median of 20 followers and 4 following. Finally,
Figure 7 presents the location of the survey participants. Many of them are from the USA, UK, and India, but we observe a wide
distribution among other unspecified countries, because this information was not always available (total of 33).

TABLE 3 Participants demographics.

Mean St. Deviation Min Median Max
Public Repos 48 51 2 29 244
Contributions 1,716 2,290 38 804 11,093
Followers 80 209 0 20 1,505
Following 11 16 0 4 104

*We recorded the values in July of 2021.

OPINION SURVEY. We created a questionnaire on Google Forms composed of questions about the project developer percep-
tions of their similar interests on co–changed files and collaborative works with other developers of the project (see Figure 6).
Table 4 shows the list of questions for the final version (after the pilot study) related to evaluate the recommendation strategies.
The SQ1 item is to filter out the developers that are not open to work collaboratively with other developers. Developers who
prefer to work strictly independent task may not be open for any recommendation. The items SQ2 and SQ3 of the questionnaire
are related to relevant co–changed files for both participant and the recommended developer for identifying similar interests.

In the SQ4 item of the questionnaire, we presented for participants a list of possible opportunities for collaborative works
with the recommended developer that whether participant chose at least one of the options presented, it means they accepted the
recommended developer. Besides, the participant still could add a new task that was not on the list, or even any other comment
about other possible collaborative works. On the other hand, whether the participate choose the option “I did not work or may
not work in partnership with the owner of fork”, it means that participant rejected the recommendation. The SQ5 item allows the

Kattiana Constantino ET AL 11

0

5

10

15

20

25

FIGURE 7 Location of the survey participants.

TABLE 4 Survey questions.

ID Questions
SQ1 How do you prefer to work on the project?

[] In collaboration with the core team
[] In collaboration with owners of other forks
[] Independently

SQ2 I am interested in some of these changed files in this fork:
[] Strongly Disagree, [] Disagree, [] Neither Agree or Disagree, [] Agree, and [] Strongly Agree

SQ3 I am familiar with some fork changes in these files:
[] Strongly Disagree, [] Disagree, [] Neither Agree or Disagree, [] Agree, and [] Strongly Agree

SQ4 I worked or may work in partnership with the owner of this fork on some tasks of the project, such as:
[] software development tasks (e.g., feature or test suites developing, or code review)
[] issues management tasks (e.g., reporting, triaging, or solving issues)
[] community building (e.g., motivating/recruiting collaborators, or promoting/directing the project)
[] maintainability (e.g., improving code/project quality)
[] mentorship/knowledge sharing (e.g., for giving/asking help to develop a new feature or fix an issue)
[] repository management tasks
[] I did not work or may not work in partnership with the owner of fork
[] other (open question)

SQ5 Are there other active forks in this project that you know about that you would consider to be of your interest?
Which are they? (open question)

SQ6 Other important observations or suggestions (open question)

participant to identify whether there is any other suitable developer. It is essential information for us to check or to improve the
strategies. Finally, SQ6 item is an open space for comments and observations that the participants considered relevant. These
additional questions aim to catch any important issues to participants not asked in the questionnaire.

DATA ANALYSIS. First, we collect quantitative and qualitative data from the online survey and mined data, such as demo-
graphic information. Section 5 presents the descriptive analysis of these data and Chi-Squared (𝜒2) test41,42. We applied the
Chi-Squared test to analyze categorical grouped responses to Likert scale questions and to test the hypotheses of no associa-
tion between the two groups (i.e., to check independence between two variables)43. Furthermore, to apply the Chi-Squared test,
we should fulfill three prerequisites: (1) Random data from a population; (2) The expected value of any cell should not be less
than five; (3) if the value in any cell is less than five, it should not occupy more than 20% of cells, i.e., in two by two table, no
cell should contain an expected value less than five. Violation of this assumption needs to be corrected by Yate’s correction or
Fisher’s Exact test44. We used the R language, RStudio8, and some statistical R packages, such as “dplyr” and “rstatix”. Finally,

8https://www.rstudio.com/

12 Kattiana Constantino ET AL

we qualitatively analyzed the open question in items SQ4 and SQ6 of the questionnaire. In Section 6.1, we applied the open-
coding techniques for qualitative research45. Afterward, we analyzed the responses and marked relevant segments with codes
(tagging with keywords). Later, we grouped these codes into relevant categories to extract key findings. Conflicts in labelling is
resolved by joint discussion among the researchers involved in this paper.

5 RESULTS

This section presents the results according to each research questions of this study. These results provide insights into the
perspectives of developers.

5.1 Overview of Participants
This section summarizes the participant responses for the SQ1 item of the questionnaire (How do you prefer to work in the
project?) (see Table 4). They had the following options to answer (more than one option is allowed): (1) In collaboration with
the core team members, (2) In collaboration with the other developers (owners of forks), and (3) Independently. Table 5 shows
all combinations of these groups based on developer preferences. As detailed in Section 4, we focus on analyzing the answers
from developers open to work collaboratively (102 developers). It means that we excluded all participants that preferred to work
strictly in independent tasks (16 developers). Thus, most participants (68%) declared that they prefer to work collaboratively
only with members of the core team. The other participants were open to collaborating with other developers or independent
tasks, depending on the project demands.

TABLE 5 Developer expectations (preference).

Group of Preferences #
core team members 70
core team members, other developers, and independently 12
core team members and other developers 11
core team members and independently 7
other developers and independently 1
other developers 1
Total 102

5.2 RQ1 - Are developers interested in code changed by recommended developers?
To answer RQ1, we used the participant responses for the SQ2 item of the questionnaire (I am interested in some of these changed
files in this fork) (see Table 4). For each participant, we presented another developer of the same project and a set of co–changed
files. This developer is one of the top-3 recommended developers identified by one of the two scenarios we exploit. Table 6
summarizes of data collected with Likert rating scales46 for the survey question (SQ2). Participants answered the question with
the following options for each statement: (1) “Strongly Disagree”, (2) “Disagree”, (3) “Neither Agree or Disagree”, (4) “Agree”,
and (5) “Strongly Agree”.

For this RQ, we make two analyses. First, we analyzed data about precision of similar interests from the sum of levels 3, 4, and
5 of the Likert scale. Afterward, we followed a more conservative criterion with the levels 4 and 5 of the Likert scale, as presented
in the last row of Table 6. Thereby, considering the first analysis (3-4-5 of the Likert scale), we obtained the level of 88% and 48%
of precision related to the interests in the works of recommended developers from STRATEGY 1 and STRATEGY 2, respectively.
To check the independence of the strategies, we applied the Chi-Squared (𝜒2) test with Yates’ continuity correction43. According
to Chi-Squared test, the p-value is 0.003, which allows us to conclude that the precision is statistically different for strategies
(𝜒2 = 8.37, 𝛼 = 0.05). Besides, analyzing the more conservative criterion (4-5 of the Likert scale), we also classified the interest
of the developer that informed a higher (≥ 4) concordance with interest in co–changed files (see Table 6). We obtain 64% and
48% of precision for STRATEGY 1 and STRATEGY 2, respectively. The comparison of precision with Fisher’s Exact test shown
that there were statistically significant differences between strategies (p-value = 0.001, 𝛼 = 0.05). Therefore, being interested in

Kattiana Constantino ET AL 13

TABLE 6 Percentage of the surveyed participants related to interest in co–changed files.

Interest in co–changed files
Likert Scale* Strategy 1 Strategy 2
1 9% 35%
2 3% 17%
3 22% 0%
4 44% 31%
5 22% 17%
3-4-5 88% 48%
4-5 64% 48%

*Using Likert type rating scale of (1) Strongly Disagree, (2) Disagree,
(3) Neither Agree or Disagree, (4) Agree, and (5) Strongly Agree.

code changes of other developers may indicate an openness to creating ties of collaboration. From that perspective, we conclude
that most surveyed developers from STRATEGY 1 are interested in the works of recommended developers.

RQ1 summary: We observe that developers have interests with other developers based on their co–changed files, espe-
cially for STRATEGY 1. This consideration is relevant because coding tasks may indicate opportunities for contributions
to the project. Thus, the interest of the developer in a specific code may motivate them to become a long-term developer
in the project or be willing to engage in collaborations.

5.3 RQ2 - Are developers familiar with code changed by recommended developers?
To answer the RQ2, we used the participant responses for the SQ3 item (I am familiar with some fork changes in these files)
(see Table 4). We followed the same procedures as explained before for RQ1 (Section 5.2). That is, we also presented another
recommended developer of the same project and their set of co–changed files. Table 7 summarizes of data collected with Likert
rating scales for the SQ3 question.

TABLE 7 Percentage of the surveyed participants related to familiarity with co–changed files.

Familiarity with co–changed files
Likert Scale* Strategy 1 Strategy 2
1 12.5% 35%
2 12.5% 13%
3 3% 4%
4 25% 26%
5 47% 22%
3-4-5 75% 52%
4-5 72% 48%

*Using Likert type rating scale of (1) Strongly Disagree, (2) Disagree,
(3) Neither Agree or Disagree, (4) Agree, and (5) Strongly Agree.

We expect that developers familiar with the code may be open to collaborate. They may help each other, give tips for code
improvement, code together, or other possibilities. Table 7 also presents the percentages of participant answers related to the
familiarity with works of recommended developers by each strategy. Again, if we consider the sum of levels 3, 4, and 5 of
the Likert-type scale, as presented in Table 7, the results are 75% and 52% of precision for STRATEGY 1 and STRATEGY 2,
respectively. We highlight that STRATEGY 1 presents a slightly better result. Chi-Squared test with Yates’ continuity correction
shown that no significant statistical difference for the two samples (𝜒2 = 2.15, p-value = 0.14, 𝛼 = 0.05). For the levels 4 and 5
of the Likert-type scale, i.e., a conservative analysis, the results are 72% and 48% of precision for STRATEGY 1 and STRATEGY

14 Kattiana Constantino ET AL

2, respectively. In this case, the Fisher’s Exact test also shown that no significant statistical difference for the two samples p-
value = 0.135, 𝛼 = 0.05). In that way, the results were different, but the strategies maintained the same order of precision based
on familiarity with co–changed files.

Moreover, the changed files may highlight the opportunities of collaborations among them as participant S2.07 declared
“These are not long-term forks. My fork, as well as the one linked to, are places where we, as core contributors of the project,
prepare work before sending it for review. For all of these examples (co–changed files), in fact, we made the changes together.”

Overall, about half of all surveyed developers from STRATEGY 2 are familiar with other developers based on co–changed
files. One of the reasons for these results is that STRATEGY 2 promotes the files based on the number of lines of code added or
removed (sum). Some large and unusual commits based on this strategy are considered important for developers47. However, in
both contexts of analysis, we observed that the developers from STRATEGY 2 were a little less confident in the co–changed files
than the other strategy.

RQ2 summary: Concerning the level of familiarity, we observe that developers identified by STRATEGY 1 are more
familiar with co–changed files than developers from STRATEGY 2. Familiarity with code from other developers may
indicate one less barrier for improving collaborations and providing code quality.

5.4 RQ3 - How precise are the recommendation strategies based on co–changed files?
The purpose of RQ3 is to evaluate if the participants accept or reject the recommended developer of the same project after the
analysis of interest and familiarity with the relevant co–changed files. To this end, we used the choice of the participants for the
item SQ3 of the questionnaire (I worked or may work in partnership with the owner of this fork on some tasks of the project, such
as...) (Table 4). Besides, software development tasks are the most prominent category regarding what participants understand
as collaborative contributions to projects, as observed in our prior works15,16. Each participant analyzed the contributions of
another developer of the same project, as presented in Figure 6. These contributions were the result of one of the two strategies.
As detailed above, each strategy is based on co–changed files across participants and recommended developers. Thus, we asked
participants which types of tasks they could work collaboratively with the recommended developer. Note that, we excluded the
answers of 6 participants who gave inconsistent responses (they would not work collaboratively in any task). Table 8 summarizes
the responses of 96 participants. The task categories are: software development tasks (e.g., feature or test suites developing, or
code review), maintenance tasks (e.g., improving code/project quality), issues management tasks (e.g., reporting, triaging, or
solving issues), and mentoring tasks (e.g., giving/asking help to develop a new feature or fix an issue, and sharing knowledge with
the team), community building tasks (e.g., motivating/recruiting developers, or promoting/directing the project), and repository
management tasks.

TABLE 8 Survey results on the task categories of
developers to work collaboratively with others in the project.

Task Category # %
software development tasks 66 69
maintenance tasks 52 54
issues management tasks 48 50
mentoring tasks 37 39
community building tasks 22 23
repository management tasks 22 23
no tasks 22 23

Most developers collaborate in software development tasks (69%). Maintenance tasks (54%), issues management tasks (50%),
and mentoring tasks (39%) are also tasks to work collaboratively with other recommended developers. Community building and
repository management are the least selected tasks for collaborative work. Participants had the opportunity to further provide
an optional comment within the survey. In this optional answer, they commented that Documentation is another category for
collaborative tasks. On the other hand, 23% of them claimed that they would not work collaboratively on any task in the presented
recommended developer (“no task”). It means that the developers did not accept the recommendations in this case. Table 9

Kattiana Constantino ET AL 15

TABLE 9 Percentage of non–acceptance or acceptance
the recommended developers in each strategy.

Strategy 1 Strategy 2
Non-Acceptance 20% 35%
Acceptance 80% 65%

summarizes the responses of participants for non–acceptance or acceptance of the developer recommendation in each strategy.
Our results show that the recommendation precision were 80% and 65% for STRATEGY 1 and STRATEGY 2, respectively. Chi-
Squared test with Yates’ continuity correction shown no significant statistical difference for the two samples (𝜒2 = 0.73, p-value
= 0.392, 𝛼 = 0.05). As results show that when applied in isolation, STRATEGY 1 performs better than STRATEGY 2.

For SQ5 item of the questionnaire (Are there other active forks in this project that you know about that you would consider to be
of your interest? Which are they?) (Table 4), it was impossible to make a quantitative analysis because most surveyed developers
did not answer this open question. Few surveyed developers stated general answers, such as, “yes, the member of core team” or
“yes, many other developers”. Besides, other developers claimed on three specific developers (active forks), but one was private,
another was the own repository (origin), and the last one was another branch owned by the same developer. Thus, we could
not compare these answers with the recommend developer lists. As mentioned before, we received some responses for the open
question SQ8, commenting on the co–changed files or recommended developer presented to participants. For instance, some
participants emphasized the collaborative relationship among them interacting with each other. Participant S2.08 confirmed this
case: “I and all of the other core contributors are employed to work on this project, we report to the same management chain
and communicate frequently outside of GitHub about the project.”

RQ3 summary: We observe that STRATEGY 1 performs better than STRATEGY 2. The precision of acceptance of the
former was 80%, while the latter was 65%.

5.5 RQ4 - Do the recommendations contribute to the discovery of potentially new collaborators?
Towards answering RQ4, we manually categorized each surveyed participant and recommended developers by the type of com-
mitter (core developer, casual developer, and newcomer). To categorize as a core developer, we first considered that the core
contributor is highly involved and usually contributes to 80 percent of the source code48,49. Hence, we analyzed the ranking of
commits made by GitHub based on the total number of commits and their recent activities. Besides, we also considered the pub-
lic information (e.g., maintainer of <name of project>) on their GitHub profile and some self–declaration as claimed by S2.08
“I and all of the other core contributors are employed to work on this project...” (from the open question in items SQ4 or SQ6,
see Table 4). To categorize developers as newcomers, we considered the developers with no commits accepted in the project
and a total of non–merged commits greater than zero50,48,21. The others were categorized as casual developers, as defined in
previous studies48,51,52,49.

To verify the novelty of the developer recommendations, we assume that, for a given project, the core developers already
know each other and work collaboratively together, while most casual developers and newcomers are not well known by other
developers. Thus, for this analysis (RQ4), we are interested in investigating if the strategies can present new developers to each
other. That means, either recommending casual or newcomers for any developer or recommending core developers for the other
groups. Although some of these novel recommendations were not accepted by the surveyed participants (in particular, casual
developers, since there were only two cases of a core developer rejecting a recommended casual or newcomer developer), we ver-
ified that they still have potential relevance, given that the survey answers indicate that they do not know well the recommended
developers.

Tables 10 and 11 show the recommendations categorized by groups for STRATEGY 1 and STRATEGY 2, respectively. The
columns are the recommended developers categorized by the core developers, casual developers, and newcomer groups. Besides,
these rows in these tables indicate the surveyed participants categorized by the core developer and casual developer groups.
As mentioned before (Section 4), we consider developers with the last commit accepted in the last year and with at least four
commits accepted to ensure knowledge of the project. Therefore, no newcomer participated in the survey.

16 Kattiana Constantino ET AL

TABLE 10 Percentage of the recommended developers
accepted by surveyed groups of the STRATEGY 1.

Recommended Developers
STRATEGY 1 Core Dev. Casual Dev. Newcomer
Core Dev. 13% 7% 0%
Casual Dev. 23% 54% 3%

Table 10 shows the percentage of the recommended developers accepted by each surveyed group from STRATEGY 1. We
defined each recommendation type as <group1>-to-<group2>. It means that recommendations consist of a developer in group1
being recommended to a developer in group2. For instance, a recommendation of type core-to-casual consists of a core developer
being recommended to a casual developer. Our results show that 23% of the recommendations are core-to-casual. Other 54% of
recommendations are casual-to-casual. Exploring the novelty of the recommendations, the prior knowledge of developers of the
project is not an indicator that they already work together. Thus, it is still possible to explore these opportunities of collaboration
in the same or different components of the project. Participant S1.32 (casual developer) detailed this situation: “I don’t work
with the specified developer <fork name/project name>. I (independent) work on one component of the concerned module and
they (who is also a member of the core team) work on another. Some files are common for both of us.” Furthermore, participant
S1.09 (casual developer) stated that they might work in collaboration with a recommended developer (casual developer). We
can understand that this recommendation may be novel for this participant when the participant S1.09 explains their routine of
interaction with the other developers (core team members) of the project: “I am not familiar with other forks (developers) of the
<project name>. Usually, I discuss my ideas and thoughts in a designated GH Issue/PR with the core team...”

TABLE 11 Percentage of the recommended developers
accepted by surveyed groups of the STRATEGY 2.

Recommended Developers
STRATEGY 2 Core Dev. Casual Dev. Newcomer
Core Dev. 5% 15% 0%
Casual Dev. 5% 55% 20%

Table 11 shows the percentage of the recommended developers accepted by each surveyed group from STRATEGY 2. For
this strategy, 55% of the developer recommendations were casual-to-casual and 20% are newcomer-to-casual. Another evidence
from developer perspective about the novelty is when participant S2.16 (casual developer) tries to explain the criteria used to
find the developer recommended (casual developer) for them. The participant S2.16 accepted the developer recommendation
and explained: “I do not know how these relevant commits were picked for me, but the only connection is that both of us made
independent contributions that affect the same set of files (which is not surprising since they are closely linked).”

RQ4 summary: The two recommendation strategies shown favorable results related to novelty. That is, they did not
overload the group of core developers. The group of casual developers evaluated developers from all groups, mainly from
casual developers and newcomers groups. We emphasize that developers should pay attention to new recommendations
(novelty).

5.6 Joint Strategy
As mentioned in Section 4, we also decided to analyze the joint strategy for helping us to find some insights from participants
to merge or improve the developer recommendation strategies. Table 12 presents the percentages of 47 participant answers
(Table 2) related to interest (RQ1) and familiarity (RQ2) with works of recommended developers for joint strategy. Again, if we
consider the sum of levels 3, 4, and 5 of the Likert-type scale, the result was 75% for both perspectives. For the levels 4 and 5,
i.e., a conservative analysis, the result are 58% and 62% for interest and familiarity, respectively.

Kattiana Constantino ET AL 17

TABLE 12 Percentage of the surveyed participants
related to interest and familiarity with co–changed files.

Joint Strategy
Likert Scale* Interest Familiarity
1 10% 12%
2 15% 13%
3 17% 13%
4 32% 34%
5 26% 28%
3-4-5 75% 75%
4-5 58% 62%

*Using Likert type rating scale of (1) Strongly Disagree, (2) Disagree,
(3) Neither Agree or Disagree, (4) Agree, and (5) Strongly Agree.

The precision related to the joint strategy was 81% (RQ3). This result was better than for the other strategies (1 and 2) that may
indicate potential for improvements when combining both aforementioned strategies. Although the joint strategy is the best in
terms of precision, it does not provide recommendations when STRATEGY 1 and STRATEGY 2 do not present recommendations
in common, which could affect recommendation completeness as accepted by the recall measure.

TABLE 13 Percentage of the recommended developers
accepted by surveyed groups of the joint strategy.

Recommended Developers
Core Dev. Casual Dev. Newcomer

Core Dev. 2% 2% 2%
Casual Dev. 11% 70% 13%

Table 13 shows the percentage of the recommended developers accepted by each surveyed group from joint strategy (RQ4).
Most of the developer recommendations were casual-to-casual (70%), followed by newcomer-to-casual (13%). Participant S3.13
(casual developer), who accepted the recommendation for working collaboratively with a newcomer, explained that not all
changes get his attention in projects with too many forks. Generally, they are most interested in changes that can impact the
architectural design of the project. However, participant S3.13 is open for collaborating with any other developer interested in the
project, as declared: “I am open to working together with anyone who has the capability to bring open–source projects further.”

As mentioned before, we analyzed the joint strategy for comparison purposes. It could help us finding insights from partici-
pants to merge or improve the developer recommendation strategies. For example, the number of respondents was higher than
the other strategies (even with the same number of invitations as the other strategies), and the acceptance percentage was slightly
higher for the joint strategy than for STRATEGY 1. These examples are positive indicators for combining the strategies. However,
the joint strategy could not always provide a recommendation, thus, we need to provide an heuristic, as future work, to decide
when using the joint strategy.

Summary: First, in comparison with the other surveyed groups, we observed that participants of this group answered
the survey more. Concerning the level of familiarity, we observe that at least 48% are interested in and at least 62% are
familiar with co–changed files by the recommended developer. Besides, this joint strategy presented the best precision
(81%), which raises evidence of the benefits of combining both Strategies 1 and 2.

6 QUALITATIVE ANALYSIS AND TOOL SUPPORT

In this section, we analyze the answers from the open questions of the survey to extract new insights, suggestions, or criticism.
Furthermore, we present an overview of the COOPFINDER related to its implementation and how to use this tool.

18 Kattiana Constantino ET AL

6.1 Qualitative Analysis
For the data analysis, we employed an approach inspired by the open and axial coding phases of ground theory45. The open
coding examines the raw textual data line by line to identify discrete events, incidents, ideas, actions, perceptions, and inter-
actions of relevance that are coded as concepts 45. To do so, one researcher analyzed the responses individually and marked
relevant segments with “codes” (i.e., tagging with keywords) and organized them into concepts grouped into more abstract cat-
egories. Afterward, a second researcher reviewed and verified the categories created (the conflicts in labelling were resolved by
researchers).

Consequently, it is possible to count the number of codes, corresponding percentages, and items in each category to understand
frequent feedback from participants. In total, 42% (43/102) of participants filled this field in the questionnaire. Table 14 lists the
categories and codes from participants. As we can see, the categories are Opportunity of Collaboration, Type of Contributions,
Set of Features, Collaborative Workflow, and Characteristic of Changes.

TABLE 14 Categories and codes for the feedback of participants.

Category Codes # %
Opportunity of collaborative experience 9 21
Collaboration openness for collaboration 5 12

positive view 3 7
Type of code review 8 19
Contributions fixing bugs 6 14

pull requests 6 14
discuss ideas 4 9
developing feature 2 5
merging changes 2 5

Set of Features committer type 7 16
functionality 5 12
organization (company) 5 12

Collaborative “fork & pull” development model 7 16
Workflow GitHub is practical environment 2 5
Characteristic changes out of date 6 14
of Changes relevance of changes 6 14

size of changes 3 7

OPPORTUNITY OF COLLABORATION. For 21% of participants mentioned their experience in collaboration with the recom-
mended developer or other developers of the project. For instance, participant S2.20 “I became a maintainer for <project name>
in 2017 which was after the specific change on <recommended developer name> was made. It is interesting to see it. In the past
1.5 years, I have become aware of this developer work and may collaborate more with him in the future”. Besides, participant
S2.17 mentioned related to openness for collaboration (12%) “I am on the core team, and we review PRs regularly, so really
any active fork will be of interest.” Finally, participant S2.16 had a positive view related to this study, declaring “So, what you
are really discovering here is that there is a cool way to detect which groups of files are correlated”.

TYPE OF CONTRIBUTIONS. For this category, the top-4 type of contributions are code review (19%), fixing bugs (14%),
managing pull requests (14%), and discuss ideas (9%). First, participants declared which are their main contributions to the
project. They also stated how collaboration happens. For instance, S3.33 explained “collaboration occurs when I submit a pull
request into the main repository of the project, and those code changes undergo review. Collaboration also occurs when issues
are discussed, again in the main repository”.

SET OF FEATURES. We did not present for participants which strategy we applied to recommend a developer to them. Hence,
we can identify some features that participants mentioned. Following, we can explore them in future works to improve our
strategies. For instance, 16% of participants mentioned the type of committer, i.e., either participant or the recommended devel-
oper was a member of the core team or a casual contributor. Furthermore, 12% of participants mentioned that they worked in
the same functionality (or feature) of the project. Besides, some participants (12%) suggested that they are from the same com-
pany, organization, or team. For instance, participant S3.07 explained “the owner of this fork and I work on the same team at
<company name>.”.

Kattiana Constantino ET AL 19

COLLABORATIVE WORKFLOW. For 16% of the participants explained that they use the “fork & pull” development model in
their project. In this model, the developers can make a copy of the original project and made any changes without any permission
request. Next, when the changes are ready, they can submit them to review and after to be integrated or not to the original
repository. Furthermore, of participants declared that the GitHub repository is a practical environment to develop projects. For
instance, participant S3.35 declared “the general development of this project is interesting and important, but my ability to
contribute is limited. That makes working in a GitHub setting very practical”.

CHARACTERISTIC OF CHANGES. As mentioned earlier, we presented a set of relevant files for participants to analyze the
recommendation further. Even though these files were in a recent time window (Section 4), about 14% of participants claimed
that the changes were outdated and could impact the collaboration. For instance, participant S2.22 declared “this fork did not
have any recent changes, so potential collaboration seems less likely”. Besides, 14% of participants reported the relevance of
commits. For some participants fixing typos and minor changes are not relevant. On the other hand, participant S3.31 pointed
out “It is rare to work directly on a fork together, unless we are prototyping a big feature”.

6.2 Tool Support
COOPFINDER9 53 implements the two developer recommendation strategies (STRATEGIES 1 and 2) based on co–changed files
(Section 3). We designed this Web tool using client-server architecture and visualization techniques. In addition, we used Python
3 language10 and a free machine learning library for Python, called scikit-learn libraries11 for the server-side. To implement
views in COOPFINDER, we used the analytical data visualization components called HighCharts12, a JavaScript library for
manipulating documents based on data. Finally, we built the tool using components provided by the Bootstrap Framework13,
which includes several stylesheets and jQuery plugins for establishing interactive Web sites or application user interfaces. All
these technologies were employed for realizing a dynamic exploration and visualization experience.

HOW TO USE COOPFINDER. Figure 8 shows the screenshots of COOPFINDER related to the list of contributors of a selected
project. This list corresponds to all contributors that modified any files in their copies. Frame (A) shows the project information
to which the collaborators belong to, such as repository name, number of stars, number of forks, and number of open issues.
Frame (B) shows the table of all collaborators of the focused project. For each collaborator, this table presents the developer
information, such as their avatar, name, fork, number of their followers, number of their following. Frame (C) shows the code
activities related to the number of commits in upstream, number of the non–merged commits, and the last commit date. With this
information aggregated, the user is able to know the status of the collaborator in the project. For instance, users can investigate
whether collaborators are still active in the project based on the number of merged commits and the last commit date. On the
other hand, the non–merged commits associated with the last commit date indicate that the collaborator may need some help. In
this scenario, the maintainer can overview all collaborators interested in the project or create a team based on co–changed files.

Figure 9 illustrates the screenshot of COOPFINDER with the list of recommended collaborators for the target developer. This
list may vary depending on the selected strategy. It also depends on the rank of relevant files for each project developer (Section
3). Frame (D) shows the project information to which the collaborators belong to, as mentioned before. Frame (E) shows the
target developer and their information, for example, name, avatar, last commit date, the number of total commits, followers, and
followings. Frame (F) shows a list of recommended developers with similar interests based on co–changed files. Information
of developers is their name, fork, number of the merged commits, number of the non–merged commits, and last commit date.
Users can select one of the recommended collaborators on Frame (F) to compare with the target developer on Frame (E). Then,
Frame (G) presents these two collaborators selected, their names, and their fork linked with their GitHub profile. After that, the
users can analyze the common files of the two developers, as shown in Frame (H). Finally, Frame (I) presents the expertise of
recommended developer (programming language) related to the focused project. The developer expertise refers to the percentage
of files changed in each programming language.

9https://homepages.dcc.ufmg.br/ kattiana/coopfinder/welcome.html
10https://www.python.org/
11https://scikit-learn.org/stable/index.html
12https://www.highcharts.com/
13https://getbootstrap.com/

20 Kattiana Constantino ET AL

A

B

C
Developer 1 Fork 1

Developer 3 Fork 3

Developer 2 Fork 2

Developer 4 Fork 4

Developer 6 Fork 6

Developer 5 Fork 5

Developer 7 Fork 7

Developer 9 Fork 9

Developer 8 Fork 8

Developer 10 Fork 10

Project Name

FIGURE 8 Contributors information.

D

H

I

fork 1

fork 2

fork 3

fork 4

fork 5

developer 1

developer 2

developer 3

developer 4

developer 5

developer target

developer target developer 4

developer 4

fork 4

developer target

fork target

E

F

G

Project Name

FIGURE 9 Exploring developer recommendations.

Kattiana Constantino ET AL 21

7 THREATS TO VALIDITY

We designed and conducted carefully the opinion survey described in this study. For instance, we delimited our scope prior to its
execution, defined our hypotheses, and how to assess them. However, some threats to validity may affect our research findings.
In this section, we discuss these threats with respective treatments based on the proposed categories of43.

CONSTRUCT VALIDITY. The construct validity regards the relationship between theory and observation43. We run our script to
filter the GitHub repositories and include project with different rising curve of collaborations among their developers, domains,
number of contributors, etc; we defined, as inclusion criteria, the number of stars > 1,000. Another threat is that many casual
developers copy the project, contribute back for some time, lose interest and abandon the project. Because they are casual
developers and their copies are still active, we cannot guarantee that they still are interested in the project. Interest and familiarity
with the source code of the project can impact our study results. Therefore, we try to minimize this threat by inviting only
developers who have contributed to the project in the past year.

INTERNAL VALIDITY. The internal validity is related to uncontrolled aspects that may affect the study results43. Our findings
may be affected by the unbalance among participant groups or the low number of participants in each strategy. Besides, only
certain types of contributors of GitHub may volunteer for a survey (e.g., contributors that modified any files or contributors that
their forks are public). However, we carefully mined, using code script, for popular projects (>1,000 stars) to obtain distributed
samples of developers of different domain and origin projects for all strategies. Another threat is the use of statistical tools. We
paid particular attention to the suitable use of statistical tests (i.e., Chi-Squared test) when reporting our results. This decreases
the possibility that our findings are due to random events.

EXTERNAL VALIDITY. The external validity concerns the ability to generalize the results to other environments43. A primary
external validity can be the selected projects and participants. We analyzed public and different open–source projects hosted
on GitHub, different community sizes, and programming languages, among many available ones. We cannot guarantee that our
observations can be generalized to other projects. For example, participants may not reflect the state of the practice developers.
Furthermore, our results could also be different if we were analyzed projects hosted on other repositories, such as private or
industrial projects.

CONCLUSION VALIDITY. The conclusion validity concerns issues that affect the ability to draw the correct conclusions from
the study43. The approach used to analyze our survey results represents the main threat to the conclusions we can draw from our
study. Thus, we discussed our results by presenting descriptive statistics and statistical hypothesis tests. Besides, all researchers
participated in the data analysis process and discussions on the main findings to mitigate the bias of relying on the interpretations
of a single person. Nonetheless, there may be several other important issues in the collected data, not yet discovered or reported
by us.

8 RELATED WORK

This section discusses previous work that have similar goals and how they differ from ours along two main dimensions.
COLLABORATION CHALLENGES. Collaboration brings known challenges. For instance, the turnover of contributors is one

of the factors that impacts the sustainability of the project22. Therefore, maintainers need to be aware of the need to create a
receptive culture for everyone interested in joining the team and value their contributions2,20,54. Furthermore, it is necessary to
offer proper support in order for contributors to make quality contributions. This individual experience can be one of the keys to
retain the contributor for the short or long-term in the project3,4,5,6. Other challenges are the coordination and communication
that often break down in large and distributed teams and result in longer resolution times and build failures55,56,57. Collabo-
rative Development Environments integrate source code management tools and bug trackers with collaborative development
features58. They can be a solution to the communication and coordination challenges of distributed software projects59. Besides,
various social coding platform that allow developers to make contributions flexibly and efficiently, such as GitHub, GitLab 14,
Bitbucket 15, SourceForge 16, and others. In our context, we focus on one social coding platform, GitHub, to improve open–
source software development collaboration. GitHub is a example of a Collaborative Development Environment that provides an

14https://about.gitlab.com/
15https://bitbucket.org/
16http://sourceforge.net

22 Kattiana Constantino ET AL

infrastructure for collaborative development. Besides, GitHub is a Web-based code-hosting service that uses the GIT distributed
version control system.

TABLE 15 An overview of prior works that explored recommendation strategies.

Paper Purpose Feature Set Techniques* Repository

8 user-user source code data IR Subversion
60 user-task source code data IR/SM Subversion

9 user-user technical skills and
project data SM SourceForge.Net

10 user-user social interactions
and project data IR/SM Git-based and

community repository

13 user-task social interactions
and project data ML GitHub

61 user-task source code data SM Gerrit code review

32 user-task technical skills and
source code data SM GitHub

14 user-task project data IR GitHub
Our work user-user source code data IR/SM GitHub

*The acronyms used in the “Techniques” column stand for: Information Retrieval (IR) methods: Includes topic detection, term frequencies,
relative category frequency, semantic filtering, ranking functions. Machine Learning (ML) methods: Includes support vector machines.
Similarity Measure (SM): Includes cosine similarity, euclidean distance, asymmetric dice coefficient, random walk restart compatibility metric.

DEVELOPER RECOMMENDATIONS FOR COLLABORATIVE INTERACTIONS. The relationship between developers is collabo-
rative when they interact with each other to achieve a common goal or do a task in an intellectual effort. Table 15 shows an
overview of many works in the literature related to recommendations for collaborative interactions in software engineering. For
instance, Minto and Murphy et al. (2007)8 ranked a list of the likely emergent team members with to communicate based on a
set of files of interest. They applied a simple frequency-based weighting to form these recommendations. Besides, they extracted
information available from the Subversion repository. In our work, we also recommend user to user of a project. We applied
the TF-IDF score as a “relevance file scoring” and a classifier based on cosine similarity measure to support recommendations
using different code activity information (number of commits and quantity of changed LoC).

Surian et al. (2011)9 recommended a list of top developers that are most compatible based on their programming language
skills, past projects, and project categories they have worked on before. In addition, they extracted information available from
SourceForge.Net. In our context, we collected information based on only source code changes from the target project that the
developer collaborates with other developers or with the project. Besides, we collected data from GitHub. Canfora et al. (2012)10

identify and recommend mentors for newcomers in software projects by mining data from mailing lists and versioning systems.
They used raw frequencies (TF) and asymmetric Dice coefficient as techniques to construct the recommendation list. They
evaluated the approach on data from five open–source projects, Apache httpd, the FreeBSD kernel, PostgreSQL, Python, and
Samba. In our context, we also recommend a list of developers with knowledge in specific parts of software projects. However,
we extended our recommendations for all active collaborators of the project that need help or want to follow the work of another
one. As mentioned before, we used TF-IDF and cosine similarity measures.

On the other hand, other works focused on recommendations whose general purpose is to recommend developers for a specific
task. For instance, Kagdi and Poshyvanyk (2009)60 recommend a ranked list of developers to assist in performing software
changes. They combined Latent Semantic Indexing (LSI) techniques with Mining Software Repositories (MSR) to recommend
a ranked list of candidate developers for the source code change. They obtained data from the Subversion repository. Jiang et al.
(2015)13 recommended core members for contribution evaluation. They used Support Vector Machines techniques (SVM) to
analyze different kinds of features, including file paths of modified codes, relationships between contributors and core members,
and the activeness of core members.

Thongtanunam et al. (2015)61 recommended reviewers based on past reviews of files with similar names and paths. First,
it finds past reviews with files whose paths and names are similar to those in the patch under review by string comparison.

Kattiana Constantino ET AL 23

Then, it assigns the same score for all the reviewers from each such past review. Finally, all reviewers are ranked based on the
sum of their scores. Based on these results, they aims to help developers to appropriate code-reviewers. Rahman et al. (2016)32

identified an appropriate code reviewer for a pull request. In addition, they analyzed the past developer work experience with
external software libraries and specialized technologies used by the pull request.

Zanjani et al. (2006)62 identified reviewers who have changed files with similar names. Kagdi et al. (2012)63 recommend
a ranked list of expert developers to assist in the implementation of software change requests. They applied the Information
Retrieval (IR)-based concept location technique to locate source code entities relevant to a given textual description of a change
request. Costa et al. (2019)14 recommended participants for collaborative merge sessions. They analyzed the project history and
built a ranked list of most appropriate developers to integrate a pair of branches (Developer Ranking).

Other efforts64,65,66,67,68,69,70,71 have been done in context of recommendation projects for developers and vice-versa. For
instance, Liu et al. (2020)72 recommend software features from the users’ perspective for designers of the project. Another
example, Berkani (2020)34 recommends friends in social networks. They take into consideration the semantic and social
information of users. However, this kind of recommendations is not the focus of our work.

In our context, we recommend user(s) to user based on co–changed files for together contributing to the engagement in the
project and enhance the opportunities for collaborations, not only core members or code-reviewers but also any collaborator that
has commonly interested. For instance, developers who implement similar features by changing the same files. We shown a list
of possible opportunities for collaboration and the surveyed participant chose in which of them they could work together with
the recommended collaborator, as a mentor, as a tester, as a developer, as a reviewer. Besides, we evaluate these strategies of
recommendations in the context of GitHub repositories, using data collected from the answers of the 102 surveyed developers,
while previous work8,60,13,61,32 rely on automatic evaluations based on very limited ground truths that do not necessarily capture
the will to collaborate.

Furthermore, the software developer recommendation problem can be defined as producing, for a given developer 𝑑, a list of
possible collaborators, sorted according to their relevance (interest in collaborating with) to 𝑑. Similarly to other recommendation
problems (e.g., movie recommendation), our problem can be viewed in two scenarios: a cold start scenario and a non cold start
scenario. The cold start problem refers to the absence of sufficient information regarding a given user, which makes it difficult
to produce effective recommendations for that user73. Following prior studies8,10, in this work, we focus on the non cold start
scenario, leaving specific solutions to address cold start as future work.

9 CONCLUSIONS AND FUTURE WORK

This work discussed an survey study to evaluate two strategies based on co–changed files. We collected the data from an opinion
survey answered by 102 GitHub developers of popular projects (>1,000 stars). Our results shown that (i) we can conclude
that developers identified by STRATEGY 1 manifested more interest in co–changed files from recommended developers. This
consideration is relevant because coding tasks link many opportunities for contributions to the project. Thus, the interest of the
developer in a specific code or part of them may motivate them to become a long-term developer in the project or be willing
to encourage collaborations. Again, (ii) developers identified by STRATEGY 1 are more familiar with co–changed files than
other developers from STRATEGY 2. Familiarity with code from other developers may indicate one less barrier for improving
collaborations. (iii) The acceptance rates were 80% and 65% for STRATEGY 1 and STRATEGY 2, respectively. For joint strategy
presented the best acceptance rate (81%), which rises evidence of the benefits of combining both STRATEGIES 1 and 2. (iii)
The two recommendation strategies shown favorable results related to novelty. That is, they did not overload the group of core
developers. The group of casual developers evaluated developers from all groups, mainly from casual developers and newcomers
groups.

In this work, we compute the #changed LoC metric, as well as the number of commits, considering the whole lifetime of the
project, for both strategies. However, it is possible to configure this time window parameter, for both evaluated strategies, which
we leave as future work. In another direction, as future work, we intend to evaluate further combinations of these strategies. For
example, a good strategy would be the concatenation of the lists of recommendation of STRATEGY 1 and 2, in this order, that
is, from the highest precision method to the lowest. Furthermore, we intend to combine our proposed strategies and exploit new
evidence of the relevance of the recommendations, for example, other types of interactions among developers such as comments
and discussions. Moreover, we also intend to evaluate the recommendations focusing on the newcomers perspective. Besides
that, we intend to evaluate other aspects of the recommendation effectiveness, such as recall, and diversity.

24 Kattiana Constantino ET AL

10 ACKNOWLEDGMENTS

Many thanks to participants of our survey and reviewers. This research was partially supported by Brazilian funding agencies:
CAPES (88881.189537/2018-01) and FAPEMIG (Grant PPM-00651-17).

11 ORCID

Kattiana Constantino https://orcid.org/0000-0003-4511-7504
Fabiano Belém https://orcid.org/0000-0003-1076-2052
Eduardo Figueiredo https://orcid.org/0000-0002-6004-2718

References

1. Shah SK. Motivation, Governance, and the Viability of Hybrid Forms in Open Source Software Development. Management
Science 2006; 52(7): 1000–1014.

2. Crowston K, Fagnot I. Stages of Motivation for Contributing User-Generated Content: A Theory and Empirical Test.
International Journal of Human-Computer Studies 2018; 109: 89–101.

3. Qiu HS, Nolte A, Brown A, Serebrenik A, Vasilescu B. Going Farther Together: The Impact of Social Capital on Sustained
Participation in Open Source. In: Proceedings of the 41st International Conference on Software Engineering (ICSE). ; 2019:
688–699.

4. Barcomb A, Stol KJ, Riehle D, Fitzgerald B. Why do Episodic Volunteers Stay in FLOSS Communities?. In: Proceedings
of the 41st International Conference on Software Engineering (ICSE). ; 2019: 948–959.

5. Zhou M, Mockus A. What Make Long Term Contributors: Willingness and Opportunity in OSS Community. In:
Proceedings of the 34th International Conference on Software Engineering (ICSE). ; 2012: 518–528.

6. Zhou M, Mockus A. Who will Stay in the FLOSS Community? Modeling Participant’s Initial Behavior. IEEE Transactions
on Software Engineering 2014; 41(1): 82–99.

7. Barcomb A, Stol KJ, Fitzgerald B, Riehle D. Managing Episodic Volunteers in Free/Libre/Open Source Software
Communities. IEEE Transactions on Software Engineering 2020; 48(1): 260-277.

8. Minto S, Murphy GC. Recommending Emergent Teams. In: Proceedings of the 4th International Conference on Mining
Software Repositories (MSR). ; 2007: 5-5.

9. Surian D, Liu N, Lo D, Tong H, Lim EP, Faloutsos C. Recommending People in Developers’ Collaboration Network. In:
Proceedings of the 18th Working Conference on Reverse Engineering (WCRE). ; 2011: 379–388.

10. Canfora G, Di Penta M, Oliveto R, Panichella S. Who is going to Mentor Newcomers in Open Source Projects?. In:
Proceedings of the 20th International Symposium on the Foundations of Software Engineering (FSE). ; 2012: 1–11.

11. Oliveira J, Viggiato M, Figueiredo E. How Well do You Know this Library? Mining Experts from Source Code Analysis.
In: Proceedings of the 18th Brazilian Symposium on Software Quality (SBQS). ; 2019: 49–58.

12. Oliveira J, Pinheiro D, Figueiredo E. JExpert: A Tool for Library Expert Identification. In: Proceedings of the 34th Brazilian
Symposium on Software Engineering (SBES). ; 2020: 386–392.

13. Jiang J, He JH, Chen XY. Coredevrec: Automatic Core Member Recommendation for Contribution Evaluation. Journal of
Computer Science and Technology 2015; 30(5): 998–1016.

14. Costa C, Figueirêdo J, Pimentel JF, Sarma A, Murta L. Recommending Participants for Collaborative Merge Sessions. IEEE
Transactions on Software Engineering 2021; 47(6): 1198-1210.

https://orcid.org/0000-0003-4511-7504
https://orcid.org/0000-0003-1076-2052
https://orcid.org/0000-0002-6004-2718

Kattiana Constantino ET AL 25

15. Constantino K, Zhou S, Souza M, Figueiredo E, Kästner C. Understanding Collaborative Software Development: An
Interview Study. In: Proceedings of the 15th International Conference on Global Software Engineering (ICGSE). ; 2020:
55–65.

16. Constantino K, Souza M, Zhou S, Figueiredo E, Kästner C. Perceptions of Open-Source Software Developers on
Collaborations: An Interview and Survey Study. Journal of Software: Evolution and Process 2021; 33: e2393.

17. Replication Package, https://github.com/kattiana/coopfinder. 2022.

18. Kononenko O, Baysal O, Godfrey MW. Code Review Quality: How Developers See It. In: Proceedings of the 38th
International Conference on Software Engineering (ICSE). ; 2016: 1028–1038.

19. Yu Y, Wang H, Filkov V, Devanbu P, Vasilescu B. Wait for It: Determinants of Pull Request Evaluation Latency on GitHub.
In: Proceedings of the 12th International Conference on Mining Software Repositories (MSR). ; 2015: 367–371.

20. Gousios G, Zaidman A, Storey MA, Deursen Av. Work Practices and Challenges in Pull-Based Development: The Inte-
grator’s Perspective. In: Proceedings of the 37th International Conference on Software Engineering (ICSE). ; 2015:
358-368.

21. Steinmacher I, Pinto G, Wiese IS, Gerosa MA. Almost There: A Study on Quasi-Contributors in Open-Source Software
Projects. In: Proceedings of the 40th International Conference on Software Engineering (ICSE). ; 2018: 256–266.

22. Gamalielsson J, Lundell B. Sustainability of Open Source Software Communities Beyond a Fork: How and Why has the
LibreOffice Project Evolved?. Journal of Systems and Software 2014; 89: 128–145.

23. Pham R, Singer L, Liskin O, Figueira Filho F, Schneider K. Creating a Shared Understanding of Testing Culture on a Social
Coding Site. In: Proceedings of the 35th International Conference on Software Engineering (ICSE). ; 2013: 112–121.

24. Gousios G, Pinzger M, Deursen Av. An Exploratory Study of the Pull-Based Software Development Model. In: Proceedings
of the 36th International Conference on Software Engineering (ICSE). ; 2014: 345–355.

25. Pinto G, Steinmacher I, Gerosa M. More Common than You Think: An In-Depth Study of Casual Contributors. In: Pro-
ceedings of the 23rd International Conference on Software Analysis, Evolution, and Reengineering (SANER). ; 2016:
112–123.

26. Avelino G, Passos L, Hora A, Valente MT. A Novel Approach for Estimating Truck Factors. In: Proceedings of the 24th
International Conference on Program Comprehension (ICPC). ; 2016: 1–10.

27. Ferreira M, Valente MT, Ferreira K. A Comparison of Three Algorithms for Computing Truck Factors. In: Proceedings of
the 25th International Conference on Program Comprehension (ICPC). ; 2017: 207–217.

28. Tamburri DA, Kruchten P, Lago P, Van Vliet H. Social Debt in Software Engineering: Insights from Industry. Journal of
Internet Services and Applications 2015; 6(1): 1–17.

29. Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. 463 . 1999.

30. Salton G. Automatic Text processing: The transformation, Analysis, and Retrieval of. Reading: Addison-Wesley 1989; 169.

31. Yu CT, Salton G. Precision Weighting—An Effective Automatic Indexing Method. Journal of Association for Computing
Machinery 1976; 23(1): 76–88.

32. Rahman MM, Roy CK, Redl J, Collins JA. CORRECT: Code Reviewer Recommendation at GitHub for Vendasta Tech-
nologies. In: Proceedings of the 31st International Conference on Automated Software Engineering (ASE). ; 2016:
792–797.

33. Franco MF, Rodrigues B, Stiller B. MENTOR: The Design and Evaluation of a Protection Services Recommender System.
In: Proceedings of the 15th International Conference on Network and Service Management (CNSM). ; 2019: 1–7.

34. Berkani L. A Semantic and Social-Based Collaborative Recommendation of Friends in Social Networks. Software: Practice
and Experience 2020; 50(8): 1498–1519.

https://github.com/kattiana/coopfinder

26 Kattiana Constantino ET AL

35. Ricci F, Rokach L, Shapira B. Introduction to Recommender Systems Handbook . 2011.

36. Basili VR, Weiss DM. A Methodology for Collecting Valid Software Engineering Data. IEEE Transactions on Software
Engineering (TSE) 1984(6): 728–738.

37. Ge M, Delgado-Battenfeld C, Jannach D. Beyond Accuracy: Evaluating Recommender Systems by Coverage and Serendip-
ity. In: ; 2010: 257–260.

38. Belém FM, Batista CS, Santos RL, Almeida JM, Gonçalves MA. Beyond Relevance: Explicitly Promoting Novelty and
Diversity in Tag Recommendation. ACM Transactions on Intelligent Systems and Technology (TIST) 2016; 7(3): 1–34.

39. Krüger J, Wiemann J, Fenske W, Saake G, Leich T. Do You Remember this Source Code?. In: Proceedings of the 40th
International Conference on Software Engineering (ICSE). ; 2018: 764–775.

40. Miller C, Widder DG, Kästner C, Vasilescu B. Why do People Give Up FLOSSing? A Study of Contributor Disengagement
in Open Source. In: Proceedings of the 15th International Conference on Open Source Systems (OSS). ; 2019: 116–129.

41. Rayner J, Best D. Smooth Tests of Goodness of Fit: An Overview. International Statistical Review/Revue Internationale de
Statistique 1990; 58: 9–17.

42. Mendenhall W, Beaver RJ, Beaver BM. Introduction to Probability and Statistics. Cengage Learning . 2012.

43. Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B. Experimentation in Software Engineering. Springer Science &
Business Media.

44. Miller R, Siegmund D. Maximally Selected Chi Square Statistics. Biometrics 1982; 38: 1011–1016.

45. Corbin J, Strauss A. Basics of Qualitative Research: Techniques and Procedures for Developing Grounded Theory. Sage
Publications, Inc Thousand Oaks . 2014.

46. Robbins NB, Heiberger RM, others . Plotting Likert and Other Rating Scales. In: Proceedings of the Joint Statistical Meeting
(JSM). ; 2011: 1058–1066.

47. Goyal R, Ferreira G, Kästner C, Herbsleb J. Identifying Unusual Commits on GitHub. Journal of Software: Evolution and
Process 2018; 30(1): e1893.

48. Yamashita K, McIntosh S, Kamei Y, Hassan AE, Ubayashi N. Revisiting the Applicability of the Pareto Principle to Core
Development Teams in Open Source Software Projects. In: Proceedings of the 14th International Workshop on Principles
of Software Evolution. ; 2015: 46–55.

49. Barcomb A, Kaufmann A, Riehle D, Stol KJ, Fitzgerald B. Uncovering the Periphery: A Qualitative Survey of Episodic
Volunteering in Free/Libre and Open Source Software Communities. IEEE Transactions on Software Engineering 2018;
46(9): 962–980.

50. Begel A, Simon B. Novice Software Developers, All Over Again. In: Proceedings of the 4th International Workshop on
Computing Education Research (ICER). ; 2008: 3–14.

51. Lee A, Carver JC. Are One-Time Contributors Different? A Comparison to Core and Periphery Developers in FLOSS
Repositories. In: Proceedings of the 11th International Symposium on Empirical Software Engineering and Measurement
(ESEM). ; 2017: 1–10.

52. Lee A, Carver JC, Bosu A. Understanding the Impressions, Motivations, and Barriers of One Time Code Contributors to
FLOSS Projects: A Survey. In: Proceedings of the 39th International Conference on Software Engineering (ICSE). ; 2017:
187–197.

53. Constantino K, Figueiredo E. CoopFinder: Finding Collaborators Based on Co–Changed Files. In: Proceedings of the IEEE
Symposium on Visual Languages and Human-Centric Computing (VL/HCC). ; 2022: 1–3.

54. Gousios G, Storey MA, Bacchelli A. Work Practices and Challenges in Pull-Based Development: The Contributor’s
Perspective. In: Proceedings of the 38th International Conference on Software Engineering (ICSE). ; 2016: 285–296.

Kattiana Constantino ET AL 27

55. Herbsleb JD. Global Software Engineering: The Future of Socio-Technical Coordination. In: Future of Software Engineering
(FOSE). ; 2007: 188–198.

56. Cataldo M, Herbsleb JD, Carley KM. Socio-Technical Congruence: A Framework for Assessing the Impact of Technical
and Work Dependencies on Software Development Productivity. In: Proceedings of the 2nd International Symposium on
Empirical Software Engineering and Measurement (ESEM). ; 2008: 2–11.

57. Cataldo M, Herbsleb JD. Coordination Breakdowns and Their Impact on Development Productivity and Software Failures.
IEEE Transactions on Software Engineering 2012; 39(3): 343–360.

58. Lanubile F, Ebert C, Prikladnicki R, Vizcaíno A. Collaboration Tools for Global Software Engineering. IEEE software
2010; 27(2): 52–55.

59. Abbattista F, Calefato F, Gendarmi D, Lanubile F. Incorporating Social Software Into Distributed Agile Development
Environments. In: Proceedings of the 23rd International Conference on Automated Software Engineering (ASE). ; 2008:
46–51.

60. Kagdi H, Poshyvanyk D. Who Can Help Me with This Change Request?. In: Proceedings of the 17th International
Conference on Program Comprehension (ICPC). ; 2009: 273-277.

61. Thongtanunam P, Tantithamthavorn C, Kula RG, Yoshida N, Iida H, Matsumoto Ki. Who should Review My Code? A
File Location-Based Code-Reviewer Recommendation Approach for Modern Code Review. In: Proceedings of the 22nd
International Conference on Software Analysis, Evolution, and Reengineering (SANER). ; 2015: 141–150.

62. Zanjani MB, Kagdi H, Bird C. Automatically Recommending Peer Reviewers in Modern Code Review. IEEE Transactions
on Software Engineering 2016; 42(6): 530-543.

63. Kagdi H, Gethers M, Poshyvanyk D, Hammad M. Assigning Change Requests to Software Developers. Journal of software:
Evolution and Process 2012; 24(1): 3–33.

64. Terra R, Valente MT, Czarnecki K, Bigonha RS. A Recommendation System for Repairing Violations Detected by Static
Architecture Conformance Checking. Software: Practice and Experience 2015; 45(3): 315–342.

65. Xu W, Sun X, Hu J, Li B. REPERSP: Recommending Personalized Software Projects on GitHub. In: Proceedings of the
33rd International Conference on Software Maintenance and Evolution (ICSME). ; 2017: 648-652.

66. Ponzanelli L, Scalabrino S, Bavota G, et al. Supporting Software Developers with a Holistic Recommender System. In:
Proceedings of the 39th International Conference on Software Engineering (ICSE). ; 2017: 94–105.

67. Jiang JY, Cheng PJ, Wang W. Open Source Repository Recommendation in Social Coding. In: Proceedings of the 40th
International Conference on Research and Development in Information Retrieval (SIGIR). ; 2017: 1173–1176.

68. Rahman MM, Riyadh RR, Khaled SM, Satter A, Rahman MR. MMRUC3: A Recommendation Approach of Move Method
Refactoring using Coupling, Cohesion, and Contextual Similarity to Enhance Software Design. Software: Practice and
Experience 2018; 48(9): 1560–1587.

69. Sajedi-Badashian A, Stroulia E. Vocabulary and Time Based Bug-Assignment: A Recommender System for Open-Source
Projects. Software: Practice and Experience 2020; 50(8): 1539–1564.

70. Gong W, Lv C, Duan Y, et al. Keywords-driven Web APIs Group Recommendation for Automatic APP Service Creation
Process. Software: Practice and Experience 2021; 51(11): 2337–2354.

71. Dey T, Karnauch A, Mockus A. Representation of Developer Expertise in Open Source Software. In: Proceedings of the
43rd International Conference on Software Engineering (ICSE). ; 2021: 995-1007.

72. Liu C, Yang W, Li Z, Yu Y. Recommending Software Features to Designers: From the Perspective of Users. Software:
Practice and Experience 2020; 50(9): 1778–1792.

73. Hu L, Jian S, Cao L, Gu Z, Chen Q, Amirbekyan A. Hers: Modeling influential Contexts with Heterogeneous Relations for
Sparse and Cold-Start Recommendation. In: Proceedings of the 33rd Conference on Artificial Intelligence (AAAI). ; 2019:
3830–3837.

28 Kattiana Constantino ET AL

How to cite this article: Constantino K., Belém F., and Figueiredo E. (2023), Dual Analysis for Helping Developers to Find
Collaborators Based on Co–Changed Files: An Empirical Study, Softw. Pract. Exper., 2023;00:1–28.

	Dual Analysis for Helping Developers to Find Collaborators Based on Co–Changed Files: An Empirical Study
	Abstract
	Introduction
	Motivation and Problem Statement
	Motivating Scenario
	Problem Statement

	Strategies of Recommending Developers
	Study Design
	Goal and Research Questions
	Hypotheses Formulation
	Research Method

	Results
	Overview of Participants
	RQ1 - Are developers interested in code changed by recommended developers?
	RQ2 - Are developers familiar with code changed by recommended developers?
	RQ3 - How precise are the recommendation strategies based on co–changed files?
	RQ4 - Do the recommendations contribute to the discovery of potentially new collaborators?
	Joint Strategy

	Qualitative Analysis and Tool Support
	Qualitative Analysis
	Tool Support

	Threats to Validity
	Related Work
	Conclusions and Future Work
	Acknowledgments
	Orcid
	References

