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Abstract

Context. Code smell is a symptom of decisions about the system design or code
that may degrade its modularity. For example, they may indicate inheritance
misuse, excessive coupling and size. When two or more code smells occur in the
same snippet of code, they form a code smell agglomeration. Objective. Few
studies evaluate how agglomerations may impact code modularity. In this work,
we evaluate which aspects of modularity are being hindered by agglomerations.
This way, we can support practitioners in improving their code, by refactoring
the code involved with code smell agglomeration that was found as harmful to the
system modularity. Method. We analyze agglomerations composed of four types
of code smells: Large Class, Long Method, Feature Envy, and Refused Bequest.
We then conduct a comparison study between 20 systems mined from the Qualita
Corpus dataset with 10 systems mined from GitHub. In total, we analyzed 1,789
agglomerations in 30 software projects, from both repositories: Qualita Corpus
and GitHub. We rely on frequent itemset mining and non-parametric hypothesis
testing for our analysis.Results. Agglomerations formed by two or more Feature
Envy smells have a significant frequency in the source code for both reposito-
ries. Agglomerations formed by different smell types impact the modularity more
than classes with only one smell type and classes without smells. For some met-
rics, when Large Class appears alone, it has a significant and large impact when
compared to classes that have two or more method-level smells of the same type.
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Conclusion. We have identified which agglomerations are more frequent in the
source code, and how they may impact the code modularity. Consequently, we
provide supporting evidence of which agglomerations developers should refactor
to improve the code modularity.

Keywords: code smell, code modularity, software quantitative analysis, metrics

1 Introduction

Code smells are symptoms of the decisions on the system design and code that may
lead to degradation of its modularity and quality [1]. For instance, some smells are
related to size, high coupling, high levels of complexity, low cohesion, and inheritance
misuse. These problems make the maintenance and extension activities costly since
the code is more complex, inflexible, harder to understand, and changes may cause
ripple effects. A recent study [2] found that developers spend up to 58% of their time
understanding the source code before performing maintenance tasks.

Code smells may affect quality properties of the system, such as understandability,
extensibility, and reusability [3, 4], and they are mostly introduced at artifact creation,
usually when the developer is under pressure [5]. To remove smells, developers need
to refactor the smelly code. Refactoring is an activity in which modifications in the
source code are made without changing its external behavior, usually to improve the
code quality [1]. These changes may involve, for instance, the removal of code smells,
and code simplification [6].

Several studies evaluated the impact of isolated code smells on software modularity,
such as maintenance effort [4, 7, 8], their distribution along the systems [9, 10], software
comprehension [11], error proneness and change proneness [8, 9, 12, 13, 14, 15, 16]. In
addition, studies show that when two or more code smells co-occur in the same piece
of code (e.g, class or method), forming a code smell agglomeration, they make the code
even harder to maintain and to understand [17, 18, 19, 20]. Even though code smells in
isolation have been extensively researched in the literature [21], agglomerations only
recently started getting attention. However, most works focus on identifying the most
frequent agglomerations in the source code [22, 23, 24, 25], and few studies tried to
understand how they impact aspects of the source code modularity [9, 26] and the
code life-cycle [27, 28, 29].

Furthermore, some of these studies rely on small datasets composed of two to
four systems [19, 24, 28, 30, 31, 32]. Meanwhile, most of the studies that evaluate a
large number of systems use the detection results from only one detection tool. These
tools rely on specific metrics thresholds, thus different tools for the same smell do
not meaningfully agree with their answers. Differently from previous work, we use
multiple tools and consider the presence of agglomerations formed by the same smell
type, such as the agglomerations formed by two or more Long Methods in the same
class. These agglomerations are present due to our evaluation being at the class level,
consequently, they can not appear at method level.
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This paper expands and improves the analysis of our previous work [33]. Our main
goal is to identify which agglomeration impacts negatively modularity considering the
code complexity, coupling, and inheritance use. In our previous study, we evaluated
the impact of agglomerations in twenty systems extracted from the Qualita Corpus
[34]. We have also analyzed how agglomerations are spread along the systems. In
this work, we improved the impact analysis using statistical testing combined with
effect size calculation. We then mine a new dataset composed of ten different systems
extracted from the GitHub platform. Since the systems from the previous study are
from 2010, we aimed to verify if the results found are confirmed for systems that
are actively being maintained by the community, that is, systems that had commits
merged after 2021. Thus, for comparison reasons, we conducted an individual analysis
of each dataset, and later compared their results in order to verify their agreement. In
both datasets, we evaluate the following smells: Large Class (LC), Long Method (LM),
Refused Bequest (RB), and Feature Envy (FE). We selected these smells considering
(i) their different perspectives of code modularity degradation (see Section 3.7) and
(ii) if they were extensively researched in the literature [21].

In summary, this work is divided into two studies: the Qualita Corpus and the
GitHub studies. In both studies, we aim to identify which agglomerations are frequent
on the systems and how they may impact the software modularity. For this purpose,
we used frequency statistics [35] and frequent itemset mining [36], and we combine
hypothesis testing [35] to verify how they may impact the aspects of modularity.
Beyond that, we aim to understand if there are some smells that in combination with
other smell types impact the most/the least the modularity aspects. This is interesting
since aspects of modularity may be affected differently by different agglomerations.
To evaluate the similarities and differences between both studies, we compared and
raised possible divergences in their results. This analysis allows us to verify if the
agglomerations are sensitive to the repository choice.

In the Qualita Corpus Study, we use a subset of 20 Java systems from a state-of-
the-art dataset [34], trying to diversify the system characteristics, such as domain, size,
and maturity. In total, we have found 15,690 smells for this dataset. In the GitHub
Study, we selected 10 popular Java systems, and in total, we found 1,388 smells.

Our main findings for both datasets are:

• when analyzing the agglomerations at the class level, the agglomerations formed by
two or more smells of the same type are highly present in the dataset (36.3% of
all agglomerations for the Qualita Corpus dataset, and 33.8% for the GitHub). We
also highlight that the most frequent agglomeration type is FE+FE (i.e. at least
two Feature Envy in the same class;

• we have identified which agglomerations formed by different smells were more fre-
quent in both datasets. They are LC+FE (Support of 0.307 and 0.352 for the Qualita
Corpus and GitHub, respectively) and LM+FE (Support of 0.472 and 0.347 for
Qualita Corpus and GitHub, respectively);

• for both datasets, we have found that agglomerations formed by two or more differ-
ent smell types impact system complexity, cohesion and coupling the most. However,
we could not find a statistical difference between the datasets for inheritance;
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• for the GitHub dataset, agglomerations formed by two or more smell does not have
a significant difference between their impact on the modularity. Meanwhile, for the
Qualita Corpus, we have found differences in their impact, mostly on the class
complexity;

• we also make our data available to encourage replications and further studies on
agglomerations [37].

Audience. Researchers and practitioners in maintenance and evolution shall benefit
from our experiments and insights. We show evidence of the agglomeration impact, and
we expect that developers could use this information to evaluate which agglomerations
to refactor and improve the code modularity. The remainder of this paper is structured
as follows. Section 2 describes the main concepts used in this work. Section 3 presents
our study design. Sections 4 and 5 discuss the findings obtained for the Qualita Corpus
dataset and the GitHub dataset, respectively. Section 6 compares the results from
both datasets and presents the implications for practitioners and researchers. Section
8 discusses related works. Section 7 considers threats to both studie’s validity. Finally,
Section 9 concludes our work and presents possibilities for future work.

2 Code Smell Agglomerations

2.1 Evaluated Code Smells

Code smells are symptoms of decisions made by developers on the source code that
may degrade its modularity [1]. We opted to study four code smells: Large Class (LC),
Long Method (LM), Feature Envy (FE), and Refused Bequest (RB). The rationale for
this choice was the availability of at least three detection tools to detect each smell,
ensuring that different detection strategies are being used in their detection. This
strategy allows us to explore different approaches to what developers consider as a
code smell. We also aim to expand the current state-of-the-art knowledge by exploring
smells that were not extensively researched (FE and RB) combined with extensively
researched smells (LC and LM) [21].

LC occurs when a class tries to do too much and it usually have high number of
lines of code. LM occurs when methods have too many lines of code, frequently with
long explanations of how it works. FE occurs when a method seems more interested in
being in another class. RB occurs when a class does not use their parent’s behavior.
It is important to mention that we considered Large Class, Brain Class, and God
Class as the same smell. We also considered the Large Method, Brain Method, and
God Method as the same smell. This choice was motivated by their similar definitions
[1, 38, 18], that are highly related to the size and complexity of the code.

2.2 Classification of Code Smell Agglomerations

A code smell agglomeration occurs when two or more code smells co-occur on the same
module. In our paper, we work with agglomerations formed inside a class. We then
classify the agglomerations according to the smell that it contains: Homogeneous and
Heterogeneous. Moreover, we rely on two other definitions of whether a class has (has
not) a code smell: Isolated Code Smell and Clean Class.
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• Homogeneous Agglomeration occurs when a class has two or more code smells but
of only one type. They are possible because we are considering a higher granularity,
i.e., classes instead of method agglomeration. To better understand their behav-
ior, we further classify the Homogeneous Agglomerations according to the analyzed
smells: Homogeneous FE and Homogeneous LM. As an example of a Homogeneous
LM, consider the class org.apache.naming.resources.ResourceAttributes1 from the
Tomcat system, containing four LM (getCreation, getCreationDate, getLastModi-
fied and getLastModifiedDate). All of them are long and present a series of switch
statements.

• Heterogeneous Agglomeration occurs when a class contains two or more code smells
of different types. As an example of Heterogeneous Agglomeration, we consider the
class com.badlogic.gdx.graphics.g3d.particles.batches.-BillboardParticleBatch2 from
the Libdgx system. This class presented both the LC and RB smells. This class is
long, with more than 600 LOC, and beyond implementing the rules to personalize
the particles, it also contains code that implements the rendering and manipula-
tions, such as saving and loading. This class also presents an RB, because it only
calls two times its superclass, and it overrides most of its superclass functionalities,
adding new behavior to the class.

• Isolated Code Smell occurs when a class contains only one code smell. It can be
further characterized according to the type of smell: Isolated FE, Isolated LM,
Isolated LC, and Isolated RB.

• Clean Class defines a class with no code smell found.

We highlight that each class in our dataset is assigned to one label, according to
the number of smells and their respective type. For instance, a class containing a Large
Class and a Feature Envy will be assigned to the Heterogeneous label. Meanwhile, a
class that presents only a Large Class is labeled as Isolated Large Class.

3 Study Design

3.1 Study Design Overview

Figure 1 presents an overview of this work design. The rounded squares present the
main activities. The letters inside the circles represent the order in which each activity
was conducted. The filled arrows show that the left item served as input for the
next activity. First, we select systems to be evaluated. We selected 20 systems from
our previous study [33], all from the Qualita Corpus repository (Section 3.3). For
comparison, we selected 10 systems from GitHub repositories (Section 3.4). In Step
A, we apply five detection tools to build our smell dataset (Section 3.5). We then
calculate for each system the selected modularity metrics in Step B (Section 3.7).

In Step C, we identify and classify the Heterogeneous and Homogeneous Agglom-
erations for each dataset (Section 3.6). In Step D, we calculate how the agglomerations
impact the system modularity (Section 3.7). Finally, Step E compares the results

1https://github.com/amandads/AgglomerationsExtensionProject/blob/main/Samples/
ResourceAttributes.java

2https://github.com/amandads/AgglomerationsExtensionProject/blob/main/Samples/
BillboardParticleBatch.java
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Fig. 1: Methodology steps

obtained in both datasets (Section 6) to answer the proposed research questions
described in Section 3.2.

3.2 Research Questions

The goal of this paper is to identify which code smell agglomerations are more common
on the source code and to explore their impact on software modularity. Moreover,
beyond expanding the current knowledge on agglomerations, we provide evidence of
their harmfulness considering different perspectives of good object-oriented software
modularity. The following research questions (RQs) guided us in the data collection
and analysis.

RQ1: Which Homogeneous Agglomerations are more frequent in the source code?
RQ2: Which Heterogeneous Agglomerations are more frequent in the source code?
RQ1 and RQ2 aim to provide evidence of the frequency of agglomerations and fur-

ther investigate if they need more exploration. RQ1 provides evidence of the presence
of Homogeneous Agglomerations, while RQ2 focuses on the presence of Heterogeneous
Agglomerations.

RQ3: How do code smell agglomerations impact the system modularity? This
RQ has two main goals. The first one is to understand how such agglomerations
may impact different aspects of modularity. The second goal is to investigate if
agglomerations have a more negative impact on modularity than Isolated and Clean
Classes.

RQ4: Do the different types of Heterogeneous Agglomerations have a uniform
impact on the system modularity? Since in RQ3 we aggregated all Heterogeneous
Agglomeration in a single label to make the presentation of the results simpler, we aim
with this RQ at understanding how different Heterogeneous Agglomerations behave.
With this aim, we compare different types of Heterogeneous Agglomerations, inves-
tigating whether different combinations of smells have more or less impact on the
modularity.
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3.3 Qualita Corpus Dataset

In the first phase of our study, we opted to create a new code smell dataset, even
though some were available in the literature [22, 25]. Our main motivation was that
we had difficulties acquiring the dataset details, such as how the data was collected
and how code smells were identified. To create our dataset, we selected a subset of 20
open-source Java systems from the Qualita Corpus [34], a curated collection of systems
widely evaluated in the literature [21, 22]. We selected them according to: (i) use in
industrial and open source projects; (ii) support in different development stages; and
(iii) are often used in the code smell literature [21]. For instance, while HtmlUnit and
JMeter support testing, JHotDraw can be used to model systems. These criteria allow
us to achieve a more generalizable result since we choose systems with different sizes,
purposes, development processes, and maturity.

Table 1 presents the selected systems from Qualita Corpus phase and their char-
acteristics. The first column presents the system name and its version. The second to
fourth columns present, respectively, the systems’ lines of code (LOC), the number
of classes, and the number of methods (NOM). The fifth column presents the system
domain according to Tempero’s work [34], and the last column presents the absolute
number of code smells we found in the system. We highlight we have cleaned compan-
ion classes, such as test, demo, samples, examples, aspect-oriented, and android classes.
Our focus in this work is on evaluating only classes that implement object-oriented
code. We also highlight that the systems already have their dependency solved [39].

We can observe from Table 1 that the systems vary from small, such as Commons-
Logging which has only 2.7 KLOC distributed in 28 classes and 302 methods, to
large systems, such as Hibernate with 179.6 KLOC distributed in 3,264 classes and
25K methods. The number of code smells in each system varies greatly, ranging from
1 in SquirrelSQL to 1,699 in Weka. In total, we analyzed over 1.79M lines of code,
distributed in 24,727 classes and 186,199 methods.

3.4 GitHub Dataset

The second phase of this work aims at verifying if the results obtained from the
Qualita Corpus dataset hold for systems that are being actively maintained, such as
the top-stared GitHub (GH) repositories. This allows us to verify how generalizable the
results for code smells agglomerations are, since different practices and technologies
are employed in both datasets.

For this purpose, we first searched on GitHub for Java repositories, and sorted them
by the number of stars. The systems were obtained from April 12, 2021 to February
15, 2022, due to the process of compiling and using the detection tools. It is worth
noticing that we used the newest version of the system available at the respective data
collection date. The following exclusion criteria were used to remove some repositories.
(i) repositories that only contained educational code; and (ii) repositories with less
than 90% of its code written in Java. We restricted to Java systems, due to our
infrastructure requiring the system to be compiled in the Eclipse IDE. The large use
of libraries from other languages makes the activity of adjusting the systems to our
infrastructure unfeasible, even with dependency managers, such as Maven and Gradle.
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Table 1: Selected Systems from Qualita Corpus

Name LOC #Classes NOM Domain #Smells

checkstyle-5.6 22,877 453 2,782 IDE 231
commons-codec 7,314 96 772 tool 4
commons-io 9,309 134 1,280 tool 7

commons-lang 28,167 269 3,223 tool 19
commons-logging 2,712 28 302 tool 3
hadoop-1.1.2 211,436 2,747 17,566 middleware 173
hibernate-4.2.0 176,607 3,264 25,062 database 148
htmlunit-2.8 37,135 545 5,040 testing 273

jasperreports-3.7.4 126,793 1,779 16,527 visualization 1,109
jfreechart-1.0.13 80,619 638 8,645 tool 540
jhotdraw-7.5.1 76,983 638 7,584 graphic 470
jmeter-2.5.1 70,961 955 7,613 testing 680
lucene-4.2.0 223,880 3,261 17,550 tool 524
quartz-1.8.3 22,609 248 2,697 middleware 186
spring-3.0.5 133,713 2,733 17,838 middleware 40

squirrelsql-3.1.2 6,011 169 689 database 1
struts-2.2.1 98,396 1,580 10,691 middleware 608

tapestry-5.1.0.5 37,565 1,395 5,739 middleware 307
tomcat-7.0.2 162,621 1,700 15,634 middleware 952
weka-3.6.9 254,947 2,095 18,965 tool 1,699

Total 1,790,655 24,727 186,149 - 7,974

First, if the system did not fit the exclusion criteria, we downloaded the system
from the GitHub repository and tried to solve its dependencies automatically. If it
aroused some errors, we tried to manually adjust the environment to compile it. We
repeated this process until we got 10 systems. The list of systems is presented in Table
2, organized in a similar way to Table 1. The only difference is that in the seventh
column, we present the number of stars at the system download.

Table 2: Selected Systems from GitHub

Name LOC #Classes NOM Domain #Smells Stars

DBeaver-21.0.2 348,609 6,449 36,575 database 705 19.7K
FastJSON-1.2.76 43,536 249 1,996 tool 66 23.2K

GSON 11,641 228 920 tool 26 19.4K
jsoup1-1.14.2 17,290 242 1,540 tool 19 9.3K
JUnit-4.13.2 10,769 310 1,541 testing 11 8.3K
libgdx-1.9.14 208,028 2,714 39,338 development 512 19.6K

NanoHTTPD-2.3.1 3,566 67 380 middleware 6 6.2K
Netty-1.7.18 5,217 138 712 middleware 10 28.5K
RetroFit-1.6.0 4,706 115 403 middleware 8 37.8K
WebMagic-0.7.3 5,857 163 819 tool 25 10.2K

Total 659,219 10,675 84,224 - 1,388 182.2K

From Table 2, we can observe that we got good coverage of domains, with systems
having different domains. We also covered a variety of sizes, with DBeaver being the
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largest system, with 348.6 KLOC distributed on 6.4K classes and 36.6K methods. The
smallest system was NanoHTTPD, with 3.6 KLOC distributed on 67 classes and 380
methods. Finally, the number of smells found on each system varies, raging 6 smells
for the NanoHTTPD and 705 for DBeaver. In total, we have analyzed over 659 KLOC,
10,675 classes, and 84,224 methods.

3.5 Building the Dataset

Building a large dataset of code smells manually is an expensive and subjective activ-
ity, since the code and its relationships should be investigated. Furthermore, the
developer’s perspective about what they considered as smelly code may be influ-
enced by different aspects, such as their system knowledge and experience [20, 40].
Several techniques for code smell detection have been proposed in the literature
[41, 42, 43, 44, 45, 46, 47], employing different methods, such as metrics, machine
learning solutions, historical data, and textual information. We opted to use automatic
detection tools, since manually investigating the presence of smells is unfeasible due
to the necessary effort to understand and evaluate the code of 30 systems.

For this purpose, we selected three detection tools for each of the analyzed smells,
according to their availability and target smell. In cases where more than three tools
are available to detect the smell, we opted to use those that were most used to detect
such smell [21]. For instance, although Organic [26] also detects the LC smell, we opted
to use JDeodorant, PMD, and JSpIRIT.

To build our ground dataset, we used a voting method [48], in which each instance
(a class or method) received three votes from three different detection tools on the
presence of a certain smell. Each vote represents if the tool detected the instance. If
the instance received two or more positive votes, then the instance is added to our
code smell dataset. This process is repeated for every smell evaluated. We choose this
method due to empirical evidence that having more “thinking units” provides a more
accurate prediction [36], leading to a more reliable dataset, even though it may miss
some true positive smelly instances [49].

The smells were detected by the following tools. LC: JDeodorant, PMD and
JSpIRIT. RB: JSpIRIT, DECOR, and Organic. FE: JDeodorant, JSpIRIT, and
Organic. LM: JDeodorant, DECOR, and Organic. Beyond their availability, we
selected these tools considering the detection strategy that they employs. For instance,
DECOR uses lexical properties, structural properties and relationships to identify the
smells [50]. Meanwhile, JDeodorant identifies code smells through the detection of
refactoring opportunities [51]. The other tools use metrics and thresholds to detect the
smells, however, none of the analyzed metrics in this work are part of their detection
strategy [26, 52, 53].

3.6 Identifying Homogeneous and Heterogeneous

Agglomerations

Identifying agglomeration is not a simple task, since all combinations of code smells
must be considered, and not all of them are meaningful [36, 54]. To identify the Het-
erogeneous Agglomerations, we used frequent itemset mining [36]. This technique is
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powerful, due to its capacity to explain the relationship between the different smells
present in the sets. With its meaningfulness metrics, it can identify a significant
group of items (smells) that appear together in the dataset [36], according to different
measurements.

To identify these sets, we used the Support and Confidence measurements [36].
Support measures how frequently the combination of items appears together in the
Heterogeneous dataset. Confidence measures how certain we are of the detected asso-
ciation. Confidence values below 0.5 are not interesting [36]. In this work, we consider
all combinations in which the Support is above 0.15 and the Confidence is above 0.5.
The Support thresholds were selected after experimenting with different values. We
first checked thresholds used in the literature [22, 25, 33], for instance, 0.01 and 0.9,
but we could not find meaningful results. This may be due to these thresholds being
extreme values. For instance, in setting the Support to 0.01, we obtain all the itemsets
that have a frequency of at least 1% in all datasets. As a result, we obtained all possi-
ble combinations of smells as meaningful. Meanwhile, a Support of 0.9 indicates that
the itemset has to be present in more than 90% of our class instances. We used the
Apriori Algorithm [55] to obtain the frequent itemsets in the R package arules3. How-
ever, this technique has some drawbacks: a certain smell S can only appear one time
in the identified set. Consequently, we cannot use this technique to identify Homoge-
neous Agglomerations. We then opt to use frequency statistics and variance analysis
to characterize their presence [35].

3.7 Modularity Metrics Impact

In previous studies [12, 56], it was identified that not all smells are harmful to the
code quality. Even more, their harm depends on the context in which the smell is
present [57]. For instance, Alkharabsheh et al. [49] have found that LC smells are more
impacting in certain software domains. Our goal is to evaluate which agglomeration
types harm the most code modularity. However, attributes of quality are difficult to
estimate, since they depend on the context of the system and on who is evaluating.
To address this complexity, we used source code metrics that capture characteristics
of modularity as our proxy of quality. We selected the metrics considering (i) if they
are not part of the detection strategy of the tools; (ii) they cover several aspects of
modularity, such as complexity, coupling, cohesion, and inheritance use; and (iii) if
there were studies that correlated the metric to the modularity attribute.

In this work, we explore two views of impact: a general one, in which we compare
the agglomerations based on the types described in Section 2.2 (inspired by previ-
ous work [58]), allowing us to verify if agglomerations in general are more harmful
than classes with one/no smell. In the second view, we expand the Heterogeneous
Agglomeration analysis according to the smells that it contains and verify if there
is any combination of smells that makes metric values worse when compared to
other agglomerations. This information can be used to prioritize which Heterogeneous
Agglomerations to refactor.

To achieve our goals, we first use the Mann Whitney U Test [35], a non-parametric
statistical test, to evaluate if, for each pair of agglomerations, their distribution is

3https://cran.r-project.org/web/packages/arules/index.html
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equal. We use this test since our data do not follow a normal distribution, are
not paired, and can be ranked. For this test, we have used scipy.stats library in
Python4. Be i,j ∈ A, with A = {Set of Agglomerations Types} and i ̸= j. Be
m ∈ M = {Set of Evaluated Metrics}. We have the following hypothesis.

H0−mij = Distribution of metric m for categories i and j are equal.
H1−mij = Distribution of metric m for categories i and j are not equal.

Since we are comparing multiple categories, we use the Bonferroni Correction [35]
to correctly interpret the obtained p-values. To complement the statistical analysis, we
use Cliff’s Delta measure of effect size in order to provide information on how different
the medians are. We highlight that we are not investigating if, for a metric m, an
agglomeration surpasses a specified threshold. We are interested in investigating if two
categories have different distributions for metric m, and in case this is true, we want
to understand how much they differ. This difference is provided by the Cliff’s Delta.
It is important to notice that effects can be positive or negative. For example, suppose
that the comparison between categories X-Y had a positive effect. This indicates that,
usually, the metric value for the X is higher than Y. If we change the order to Y-X, the
effect will be negative, and Y tends to have a lower metric value than X. The Cliff’s
Delta was calculated using the Python library5

With this statistical framework, we can provide solid evidence of whether agglom-
erations impact modularity aspects. That is, if they typically have higher metrics
values than isolated and clean classes. Table 3 presents the selected metrics, the defini-
tion used, and the aspect of modularity they represent. We highlight that the selected
metrics had their correlation to the modularity previously explored by the literature
[18, 59, 60]. We used the CK tool [61] to calculate the metrics in Table 3.

Table 3: Metrics and its Modularity Aspects

Metric Definition Aspect

Coupling Between
Objects (CBO)

This metric counts the number of depen-
dencies a class C has, for instance, method
calls. [59]

Coupling

McCabe’s Complexity
(McCabe)

It counts the number of conditionals and
loop instructions. [62]

Complexity

Maximum Nesting
(MaxNest)

It calculates the highest number of blocks
nested together in class C. [60]

Complexity

Depth of Inheritance
Tree (DIT)

It measures how deep the class is in the
inheritance tree. [59]

Inheritance

Number of Children
(NOC)

This metric counts how many direct chil-
dren a class C has. [59]

Inheritance

Lack of Class Cohesion
(LCOM)

We used a normalized version of the orig-
inal LCOM, that calculates how much of
the methods use the same attributes in
their body. The lowest the value, the high-
est the cohesion of the class. [63, 59]

Cohesion

4https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.html
5https://github.com/neilernst/cliffsDelta.

11

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.html
https://github.com/neilernst/cliffsDelta.


These metrics approach different views of modularity. High coupling means that
the elements in the source code have a strong dependency on each other. This high
level of dependency may hinder the maintenance activities due to the comprehension
and possible ripple-effects of such relationships. High complexity makes the source
code harder to understand and maintain. A lack of cohesion indicates that the class
has different reasons to change. That is, it has too many responsibilities. Finally, in the
inheritance aspect, we want to verify if classes that have smells related to inheritance
are more prone to be lower on the hierarchy (high DIT) and have too many children.

4 Qualita Corpus Results

4.1 Overview of Smells Found

Table 4 presents in each line the number of smells found. The first column shows
the smell name. The second column shows the absolute number of smells identified
by the voting method (see Section 3.5). The third column presents the proportion
of code smell considering the total number of smells. The last column presents the
ratio of smelly classes/methods in our dataset. The denominator in this column varies
depending on the smell granularity (class or method).

Table 4: Code Smell Found on Qualita Corpus

Code Smell #Smell #Smell/#TotalSmell % Smelly Elements
Large Class (LC) 580 7.27% 2.36%

Refused Bequest (RB) 966 12.11% 3.91%
Feature Envy (FE) 5,128 64.31% 2.75%
Long Method (LM) 1,300 16.31% 0.7%

Total 7,974 100% -

We can observe in Table 4 that about 19% of the smells are at class level (i.e.,
LC and RB) and 81% are at method level (i.e., FE and LM). Higher participation of
smells at the method level is expected since a system has more methods than classes.
We can point out that 64% of the code smells found are FE. However, observing the
relative number of affected classes and methods (fourth column), we can verify that
the most frequent smell with respect to the total elements (i.e., classes or methods) is
RB, with 3.91% of all classes being affected by this smell. Moreover, Table 4 provides
us motivation to discuss how the imbalance in the smell distribution may bias our
results (mainly discussed in Section 6).

4.2 Exploring Homogeneous Agglomerations

Table 5 presents the number of classes that contain each type of Homogeneous Agglom-
eration. The first column presents the agglomeration type. The second column shows
the absolute number of agglomerations found. The third column presents the partic-
ipation of each Homogeneous Agglomeration in all agglomerations found, including
Heterogeneous ones.
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Table 5: Homogeneous Agglomerations on Qualita Corpus

Code Smell Count Participation in All Agg.
Feature Envy (FE) 528 34.7%
Long Method (LM) 25 1.6%

Total 553 36.3%

In total, we have found 1,523 code smell agglomerations, 553 of them being Homo-
geneous and 970 being Heterogeneous. We can observe from Table 5 that Homogeneous
FE is indeed frequent, with almost 528 classes being affected by them, and its partic-
ipation in all agglomerations is almost 35%. On the other hand, Homogeneous LM is
very rare, representing only 1.6% of all agglomerations found.

4.3 Exploring Heterogeneous Agglomerations

Table 6 presents the itemsets found in the Qualita Corpus dataset. The first col-
umn presents the itemset with the smells that composes it. In the second column,
we present the obtained Support. Itemsets consider all possible agglomerations that
have certain smells, and consequently, those agglomerations can be a subset of larger
agglomerations. The third column presents the Confidence, while forth column shows
the supersets that support the presence of the itemset found by the algorithm and
their respective percentage of participation in all Heterogeneous Agglomerations.

We highlight that we make a distinction between itemsets and Heterogeneous
Agglomerations. The first presents a + sign. The agglomerations are represented by
text. The main difference between the two is that itemsets are subsets, indicating that
they are supported by different agglomerations. For instance, FE+LM is an item-
set that was discovered by the algorithm, and is formed by all agglomerations that
have FE and LM, i.e., the FeLm, LcFeLm, LcRbFeLm, and RbFeLm agglomerations.
Meanwhile, FeLm is the agglomeration formed by only FE and LM.

For example, the itemset LC+LM has a Support of 16.9%, and four agglomerations
types support it: LcRbLm, LcRbFeLm, LcLm, and LcFeLm, with the last one being
the most frequent (89 occurrences). However, when observing Confidence, we can
conclude that we can not be confident about this result, that is, they may represent
noise or minority cases [36]. Even though this itemset is not meaningful, for comparison
purposes, we present its measurements.

We can observe that most meaningful itemset found are composed of two smells,
one smell at the class level and another at the method level. They are often com-
binations with the FE smell. This may be due to the high presence of this smell
in our dataset. The most frequent one is the LM+FE itemset, followed by LC+FE,
with Support of 0.472 and 0.307, respectively. We also observe that for most itemsets,
except LC+LM, the agglomeration that mostly contributes to the Support is the same
agglomeration presented in the first column. For the LC+LM pair, the most frequent
agglomeration is LcFeLm. This may be due to the high and unbalanced presence of
the FE smell in this dataset, making the LcFeLm more frequent. To increase validity,
we have changed the threshold values (Support) of the algorithm to verify if it gives
different results, and even after changing the parameters, we did not find different
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Table 6: Heterogeneous Agglomerations Found on Qualita Corpus

Itemset Support Confidence Agglomeration %Participation

LM+FE 0.472 0.782

LcRbFeLm
RbFeLm
LcFeLm
FeLm

15 (0.015)
48 (0.049)
89 (0.092)
306 (0.315)

LC+FE 0.307 0.788

LcRbFeLm
LcRbFe
LcFeLm
LcFe

15(0.015)
31 (0.032)
89 (0.092)
163 (0.168)

RB+FE 0.271 0.733

LcRbFeLm
LcRbFe
RbFeLm
RbFe

15 (0.015)
31 (0.032)
48 (0.049)
170 (0.175)

LC+LM 0.169 0.434

LcRbLm
LcRbFeLm

LcLm
LcFeLm

8 (0.008)
15 (0.015)
52 (0.054)
89 (0.092)

itemsets. Most itemsets found in this work were different from those found by Walter
et al. [22], and LM+FE was also found by Palomba [25].

4.4 Impact of Agglomerations on Modularity

This section investigates the impact of agglomerations on the code modularity. We
have selected six metrics that measure aspects of modularity: McCabe and maxNest
measure the complexity, CBO the coupling of a class, LCOM* the cohesion, and finally,
NOC and DIT characterize the inheritance use. The results are presented in Figure
2. Each square represents the information of a pair of agglomerations in row i and
column j. The blue color shows cases when we rejected the null hypothesis for the
metric, i.e., the central tendencies of the categories are not equal, consequently, they
impact the metric differently. Meanwhile, the red color represents that we could not
reject the null hypothesis. The different shades of blue show the effect sizes. Notice
that the red color has only one shade, since we could not reject the null hypothesis, we
cannot present further information about the effect size. Meanwhile, for the blue color,
we have four shades: Negligible (|delta| < 0.147); Small (0.147 ≤ |delta| < 0.330);
Medium (0.330 ≤ |delta| < 0.474); and Large (0.474 ≤ |delta|) [64]. The blank squares
represent that we are comparing the same category.

In the heatmaps, we also present for each pair that rejected the null hypothesis if
(i) Cliff’s delta was positive (“+” sign) towards the category in the row, indicating
that the row category usually has higher metrics values than the column; and (ii) if the
delta was negative (“-” sign), it indicates that the category on the row usually has lower
metric values than the category on the column. For example, for the LCOM* metric
(Figure 2.(d)) we have that the pair Heterogeneous (on the row) and Homogeneous
LM (on the column) has a “+” sign, indicating that Heterogeneous Agglomerations
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Fig. 2: Qualita Corpus Heatmaps for Effects of Agglomerations

has higher LCOM than Homogeneous LM, i.e. Heterogeneous Agglomerations are less
cohesive than Homogeneous LM.If we check Homogeneous LM on the row and Het-
erogeneous Agglomeration on the column, we have a “-” sign, indicating the opposite.
Figure 2 has six heatmaps, one for each of the analyzed metrics.

We can observe from the six heatmaps that for most metrics and pairs of agglomer-
ations, we could reject the null hypothesis, except for the NOC metric (Figure 2.(e)).
That is, there is a significant difference between the metrics values for different agglom-
eration types. We can highlight that for the NOC and DIT metrics, most of their
effects are small, indicating that the difference between their behavior is more uniform
than other metrics. This may be explained by the values for these metrics being usu-
ally low. However, we can observe that for the DIT metric, the Isolated RB has all of
its effects as positive.

For most modularity aspects, except inheritance, we have found that when a class
has at least one code smell, its impact is statistically higher than when the class is
Clean (all squares of Clean classes are with a “-” sign). Even more, in general, classes
with at least two smells (check the “+” signs for the Heterogeneous, Homogeneous
FE) present a higher impact on the complexity and coupling (McCabe+maxNest, and
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CBO, respectively). For the Homogeneous LM, we can observe that the coupling and
complexity tend to be higher when compared to Isolated FE and Clean Classes. For
cohesion, we can also check that Heterogeneous and Homogeneous FE are less cohesive
than other categories.

It is interesting to notice that Isolated LC is the only isolated smell that impacts
more than some agglomerations, since most of the squares have a “+” sign, even when
compared against Homogeneous FE and Homogeneous LM. This provides us initial
evidence that even when a class has multiple FE and LM, the class usually has lower
complexity and coupling when compared to a class that has only an LC. This finding
seems contradictory, since the FE smell is a method that is highly coupled to another
class, and LM has a high number of lines of code. This result may be due to the
other methods in the class that lower the metric value. For instance, for the maxNest
metric (Figure 2.(b)), we could not reject the null hypothesis between Isolated LC and
Homogeneous LM. This may be because maxNest of a class is the highest nesting of
conditionals/loops in all class’s methods. Consequently, since the algorithm identify
the method that had the highest nesting, clean methods does not affect this metric,
since they usually have low nesting values.

For the inheritance aspect, we can observe that Isolated RB and Heterogeneous,
in general, had a higher impact on this aspect (high presence of “+” signs). This is
interesting because we expected that when the hierarchy is too deep, the more the class
would reject their parents’ behavior, consequently presenting RB. We also observe
that the impact of Isolated LC on this aspect was mostly negative for the DIT, but
they tend to have more children than other categories (Figure 2.(e)).

Finding 1: For the Qualita Corpus dataset, we could identify that Heterogeneous,
Homogeneous Agglomerations, and Isolated LC indeed impact the most on class
modularity. However, when isolated, the LC smell has a higher impact on complexity,
cohesion and coupling when compared to Homogeneous FE and Homogeneous LM.

4.5 Impact of Heterogeneous Agglomerations on Modularity

This section investigates which Heterogeneous Agglomeration mostly affects mod-
ularity, and those that have a uniform behavior in the Qualita Corpus dataset.
Consequently, we can provide initial evidence of which agglomeration should be prior-
itized in the refactoring process. Figure 3 presents six heatmaps with the Cliff’s Delta
effects for each category of Heterogeneous Agglomeration found in the Qualita Cor-
pus. Each heatmap concerns one of the evaluated metrics. For legibility purposes, the
agglomerations are categorized according to the smells that they contain. For instance,
LcFe is an agglomeration composed of only LC and FE.

We can observe in Figure 3 that for most heatmaps, we have a high presence of red
squares, indicating that we could not reject the null hypothesis, except for McCabe
metric (Figure 3.(a)). This means that when compared against each other, the com-
puted metric for the categories did not present a statistically significant difference in
their distribution. However, for all metrics, we have identified that the different Het-
erogeneous Agglomerations have a similar behaviour. However, agglomerations that
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Fig. 3: Qualita Corpus heatmap for Effects of Heterogeneous Agglomerations

have an LC smell tend to have a higher impact on complexity and cohesion than those
that do not have it. We also observe that for complexity (Figure 3.(a)) and cohesion
(Figure 3.(d), usually the FeLm category is less complex and more cohesive. We can
also observe that RbFe concentrates a large number of the “-” signs, mainly when
compared to agglomerations that present an LC smell. However, for the DIT measure,
agglomerations that do not have LC are usually higher on the inheritance hierarchy
when compared to RbFe and RbLm (Figure 3.(f)).

Finding 2: We have not found a significant difference in impact for the different
categories of Heterogeneous for all analysed metrics in the Qualita Corpus dataset.
However, agglomerations that have LC smell tends to have a higher complexity and
lower cohesion than those that do not have it.

5 GitHub Results

5.1 Overview of Smells Found

Table 7 is organized in the same way as Table 4. We can observe that the most frequent
smell on this dataset is FE, with more than 40% of participation on the total number
of smells, followed by the LM smell, with almost 32% of participation. Consequently,
72% of the smells are at the method level (i.e. FE and LM), and 28% at the class
level (i.e. LC and RB). However, when we consider all classes/methods, the smells are
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indeed rare: LC and RB affect almost 2% of the classes, and FE and LM affect less
than 1% of the total methods.

Table 7: Code Smell Found

Code Smell #Smell #Smell/#TotalSmell % Smelly Elements
Large Class (LC) 194 14.27% 1.85%

Refused Bequest (RB) 189 13.62% 1.77%
Feature Envy (FE) 564 40.63% 0.67%
Long Method (LM) 441 31.77% 0.52%

Total 1,388 100% -

5.2 Exploring Homogeneous Agglomerations

Table 8 is organized in the same way as Table 5. In total, we have found 266 code smell
agglomerations, with 90 being Homogeneous and 176 Heterogeneous. We can observe
from Table 8 that all Homogeneous Agglomerations were indeed frequent in the source
code, with FE being the most frequent one, with about 23% of all the agglomerations
being of this type. We notice that the presence of Homogeneous LM is also significant,
with the participation of 10% considering all agglomerations. In total, Homogeneous
Agglomerations represent almost 34% of all agglomerations found for this dataset.

Table 8: Homogeneous Agglomerations on GitHub

Code Smell Count Participation in All Agg.
Feature Envy (FE) 62 23.3%
Long Method (LM) 28 10.5%

Total 90 33.8%

5.3 Exploring Heterogeneous Agglomerations

Table 9 presents the Heterogeneous Agglomerations, organized in the same way as
Table 6. We observe in Table 9 that four itemsets were more meaningful, all of them
being composed of two smells, and with at least one smell at the method level. The
most frequent itemset was LC+FE, with Support of 0.352 and Confidence of 0.585.
For this itemset, we had three types of agglomerations: LcRbFeLm, LcFeLm and LcFe,
with LcFe being the most frequent, with the participation of 0.244 out of the Support
of LC+FE (0.352). We highlight that for all itemsets, the agglomeration that mostly
contributes to its Support is of the same type as the itemset. For instance, for itemset
LC+FE, the highest participation is the agglomeration LcFe (43%). Observing the
Confidence measure, all itemsets found were meaningful (above 0.5), with the highest
Confidence for the RB+FE itemset (0.674).
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Table 9: Heterogeneous Agglomerations Found on GitHub

Itemset Support Confidence Agglomeration %Participation

LC+FE 0.352 0.585
LcRbFeLm
LcFeLm
LcFe

2 (0.011)
17 (0.097)
43 (0.244)

LM+FE 0.347 0.560

LcRbFeLm
RbFeLm
LcFeLm
FeLm

2(0.011)
7 (0.040)
17 (0.097)
35 (0.199)

LC+LM 0.335 0.557

LcRbLm
LcRbFeLm
LcFeLm
LcLm

2 (0.011)
2 (0.011)
17 (0.097)
38 (0.216)

RB+FE 0.165 0.674
LcRbFeLm
RbFeLm
RbFe

2 (0.011)
7 (0.040)
20 (0.114)

5.4 Impact of Agglomerations on Modularity

This section explores how agglomerations compare between themselves and with
classes that are clean or have only one smell. This comparison is made through the
evaluation of the selected modularity metrics (see Section 3.7 – Table 3). Figure 4
presents six heatmaps, one for each of the metrics. We can observe from Figure 4 that
for most modularity aspects, except the inheritance (NOC and DIT metrics), we reject
the null hypothesis (blue squares), and most of the effects were large (darkest blue).
For all analyzed modularity aspects, we can observe similar results: (i) Clean classes
tend to have negative effects (“-” signs), indicating that the presence of code smells in
the code hinders the modularity; (ii) most effects for Heterogeneous Agglomerations
are positive (“+” signs), indicating that they may be more harmful to code modular-
ity, and may make maintenance harder and more costly; and (iii), when isolated, the
LC smell presents a higher impact, with Isolated LC having most of its blue squares
with a “+” sign. In fact, the only negative effects with the Isolated LC found were
when compared to the Isolated RB for the DIT metric.

Interestingly, we have also found that Homogeneous LM impacts more than Iso-
lated smells, except when compared to Isolated LC, on the complexity and coupling.
Homogeneous FE had a higher impact only when compared to Clean classes. We can
also observe that for the inheritance (Figure 4.(e) and 4.(f)) we could not reject the null
hypothesis for the pairs with Clean classes. For instance, the pairs Clean-Homogeneous
FE and Clean-Homogeneous LM This is interesting and reflects the smell’s nature,
since FE and LM are not associated with inheritance. For all pairs with Isolated RB,
we have found a positive effect towards it (see the “+” signs), indicating that usually,
their impact on inheritance is higher than other categories, with mostly large effects.
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Fig. 4: GitHub Heatmap for Effects of Agglomerations

Finding 3: For the GitHub dataset, we can conclude that Heterogeneous Agglom-
erations and Isolated LC impact the most on modularity in the GitHub systems.
Consequently, they tend to be more complex and more coupled to other classes and
may make evolution and maintenance activities costlier.

5.5 Impact of Heterogeneous Agglomerations on Modularity

In this section, we investigate if there is an agglomeration that contributes the most
to the impact of Heterogeneous Agglomerations. Figure 5 presents six heatmaps, one
for each of the analyzed metrics. These heatmaps can be interpreted the same way
as Figure 4. Notice that we could not find any LcRbFe agglomeration in this dataset.
From Figure 5, we can see evidence that the difference between Heterogeneous Agglom-
erations is not conclusive, with most squares being red (not rejecting null hypothesis).
This may be due to the fact that some of the categories did not have the necessary
instances to compute the statistical tests, even with corrections being applied. For
the blue squares, we observe some large effects, mostly in combinations with LcFe,
LcLm, LcLmFe, RbFe, and RbLm. However, with respect to their effect size, they are
mostly negative for RbFe and RbLm, except for the RbFe in the DIT metric, achieving
positive effects when compared to agglomerations that do not present RB smell.
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Fig. 5: GitHub Heatmap for Effects of Agglomerations

Finding 4: For the GitHub dataset, we could not find a significant difference between
the Heterogeneous Agglomerations.

6 Comparison Between Datasets

6.1 Homogeneous Agglomeration Comparison

In Sections 4.2 and 5.2, we have found that Homogeneous Agglomerations are indeed
frequent on both datasets, mainly the FE one, with a participation of almost 35%
on Qualita Corpus, and 23% on GitHub. We have also observed that Homogeneous
LM has a significant presence on GitHub (about 10%). However, the high presence of
Homogeneous Agglomerations is not expected, since their appearance may indicate the
presence of other smells. For instance, a class that has two or more LM may indicate
the presence of an LC smell.

Following this rationale, we discuss the presence of Homogeneous FE, since this
agglomeration has significant participation in both datasets. One of the causes for
their presence may be the detection strategies used by the detection tools. However,
we first discuss the number of smells present in these agglomerations.

Figure 6 presents, for both datasets, the distribution of Homogeneous FE on the
systems, and how many smells usually compose it. Boxplots with the prefix “QC”
indicate data related to the Qualita Corpus dataset. Boxplots with the prefix “GH”
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indicate data related to the GitHub dataset. Item (a) presents the boxplots related
to the number of Homogeneous FE in each system of the respective dataset. Item (b)
presents the boxplots related to the number of FE smells on each Homogeneous FE
Agglomeration at the respective dataset.

Fig. 6: Presence of Feature Envy smell on the Homogeneous FE Agglomerations. (a)
Number of FE Agglomerations in each system of the dataset. (b) Number of FE smells
on each Homogeneous FE Agglomeration of the dataset.

It is expected that larger systems have more “opportunities” of presenting agglom-
erations than smaller ones. Observing Figure 6.QC.FE.(a), the number of classes
affected by such agglomerations varies greatly, with most systems having 0 to 60
agglomerations, but the median is of about 20 instances per system. The system that
had the most agglomerations was Weka, with 232 Homogeneous FE Agglomerations.

Meanwhile, for the GitHub dataset, we can observe in Figure 6.GH.FE.(a) that
most systems have 2 to 5 Homogeneous FE agglomerations, and the system that had
the most agglomerations was libGDX, with 32 Homogeneous FE. However, the median
was about 3 agglomerations per system. Overall, when observing the number of FE
smells that compose such agglomerations, we can see that for most smelly instances
the value is low, in both datasets (Boxplots 6.QCFE.(b) and 6.GH.FE.(b)) with most
agglomerations being composed of two to three FE smells. These low values may be
one of the reasons that such agglomerations do not present other smells.

Finding 5: (RQ1. Which Homogeneous Agglomerations are more frequent
in the source code?) For both datasets, we have found that they are indeed
frequent, mainly the Homogeneous FE agglomeration, with more than 20% of partic-
ipation in both datasets. Even though Homogeneous LM did not have an expressive
presence on Qualita Corpus, it did on the GitHub dataset. Consequently, since Homo-
geneous Agglomerations are not rare, they should be further investigated if method
smells are evaluated at class level.
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6.2 Heterogeneous Agglomerations Comparison

Sections 4.3 and 5.3 presented Heterogeneous Agglomerations found using Itemset
Mining Algorithm. On both datasets, we have found four Heterogeneous Agglomera-
tions with a significant presence on the source code: LC+LM, RB+FE, LC+FE, and
FE+LM. However, the order in which they contributed was different, with FE+LM
being the most present on Qualita Corpus (Support of 0.472), and LC+FE being the
most present on GitHub (Support of 0.352). However, when observing the Confidence,
LC+LM had its value below 0.5, indicating that for the Qualita Corpus dataset, this
itemset was not meaningful, while for GitHub its Confidence is 0.557.

We can also observe that for all these itemsets, except LC+LM in Qualita Cor-
pus, the agglomeration that contributed the most for the high Support was the same
agglomeration on the itemset. For instance, Table 9 presents Heterogeneous Agglom-
erations for the GitHub dataset showing that the LcLm agglomeration contributed
the most for the LC+LM itemset, with a participation of 0.216 out of 0.335. For the
LC+LM itemset on Qualita Corpus (Table 6), the agglomeration LcFeLm contributed
the most for LC+LM Support, with a participation of 0.092 out of 0.169.

Finding 6: (RQ2. Which Heterogeneous Agglomerations are more frequent
in the source code?) For both datasets, we have found that all the heterogeneous
itemsets were composed of two smells. They were: LC+LM, RB+FE, LC+FE, and
FE+LM, but appeared in different orders due to differences in their Support. The
most frequent ones were LC+FE for GitHub, and FE+LM for Qualita Corpus. How-
ever, when considering their Confidence, for the Qualita Corpus, the itemset LC+LM
had its Confidence below 0.5, indicating that it may not be as meaningful as all the
other itemsets.

6.3 Comparing the Code Smell Agglomeration’s Impact

In this section, we compare the impact of agglomerations, highlighting their main
differences and similarities, according to their results on the rejection of the null
hypothesis. Our null hypothesis stated that there is no difference between the
distribution of the metric values for a pair of categories.

For this purpose, Figure 7 presents six heatmaps, one for each of the analyzed met-
rics, presenting the differences and similarities of the results obtained for both Qualita
Corpus and GitHub datasets. White squares indicate that we could not compute the
tests, i.e., we are comparing the same agglomeration type. The lightest gray squares
indicate that we could reject the null hypothesis in one dataset, but not on the other,
providing us partial evidence about the agglomeration’s modularity impact. Gray
squares with a “∼” symbol indicate we reject the null hypothesis in both datasets,
but they had disagreed with the effect size classification. The gray cells with the “=”
symbol indicate that we reject the null hypothesis in both datasets, and they agreed
on the effect size classification. Finally, black squares with an “X” symbol indicate
that we did not reject the null hypothesis in either dataset.

We can observe in Figure 7 that in almost all heatmaps, except NOC and DIT
(Figure 7.(e) and (f)), we confirm the results in both datasets through their agreement
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Fig. 7: Differences Between the Two Dataset’s Metric Impact

on the statistical test (“∼” and “=” squares). For the DIT heatmap (Figure 7.(f)), we
mostly have partial evidence of the inheritance impact (light gray squares). However,
for Isolated RB, we could confirm that the presence of RB has an impact on the
inheritance aspect for both NOC and DIT metrics, mainly when compared to Isolated
and Clean classes.

For the McCabe, maxNest, CBO, and LCOM metrics (Figure 7.(a), (b), (c) and
(d), respectively), most of the squares were“=”, indicating that we could confirm the
impact of the agglomerations in both datasets, and they agree in both statistical test
and effect size. In general, we can observe from all heatmaps that most of the agree-
ment is on rejecting the null hypothesis for both datasets (dominance of “∼” and
“=” signals), and they most agree on the effect size for Heterogeneous Agglomera-
tions, Clean Classes, Homogeneous LM (McCabe and maxNest), and the Isolated LC
(McCabe, maxNest, CBO and LCOM).
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Finding 7: (RQ3. How do code smell agglomerations impact the system
modularity?) For most metrics, with inheritance being an exception (NOC and DIT
metric), we could observe that both datasets agree with rejecting the null hypothe-
sis (see “∼” and “=” signals). Moreover, they agree on the effect size (“=” signal),
i.e., we could confirm that different datasets lead to similar results. Moreover, we
could also observe that most of these agreements are in relation to Heterogeneous
Agglomerations and Clean classes, with Heterogeneous usually having large and pos-
itive effects. Consequently, we have found evidence that (i) agglomerations do impact
the code modularity, mainly on complexity, cohesion, and coupling aspects; and (ii)
most of the results are confirmed for both datasets.

6.4 Comparing the Heterogeneous Agglomeration’s Impact

This section discusses the results found for the Heterogeneous Agglomerations’ impact
on modularity. Our main goal with this question is to understand if different combina-
tions of code smell present in an agglomeration have different impacts on the analyzed
metrics.

For the Qualita Corpus dataset, we could mostly see differences in the McCabe and
LCOM metrics. We could also observe that agglomerations that have LC smell tend
to have a higher metric value than agglomerations that do not have it. For instance,
RbFe and RbLm had all of their effects negative in the McCabe and LCOM metric
when compared to classes that had LC (Figure 3).

For the GitHub dataset, for all analyzed metrics, we could not reject most of the
null hypotheses. The pairs that rejected the null hypothesis and had a large effect were
LcLm, LcFe, and LcLmFe (Figure 5). We also noticed that the LcRbFe agglomeration
did not appear on the GitHub dataset. Meanwhile, for the Qualita Corpus dataset,
we can observe that McCabe and LCOM metrics have more rejection of the null
hypothesis, with most of its large effects when compared to the RbFe and RbLm
agglomerations.

Finding 8: (RQ4. Do the different types of Heterogeneous Agglomerations
have a uniform impact on the system modularity?) For both datasets, we
have not found statistical differences between the different agglomerations for the
CBO, DIT, NOC, and maxNest metrics. However, for the McCabe and LCOM met-
rics on the Qualita Corpus dataset, we could observe a higher presence of large effects.
Although we did not find a significant difference in the metric behavior of Heteroge-
neous Agglomerations, we provide partial evidence that some agglomerations behave
differently on the Qualita Corpus dataset. This may be due to the fact that the ver-
sions of the systems of the dataset are older than the GitHub ones.Consequently, the
available technologies and support tools may influence the proportion of smells found.
We also highlight that the domain, maturity, and developing practices also affect the
presence of code smells, and consequently, the presence of agglomerations. 6.5
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6.5 Discussion

This section discusses our findings and their implication for practitioners. First, results
indicate that Heterogeneous Agglomerations affect more the modularity than Iso-
lated Smells and Homogeneous Agglomerations, except the Isolated LC. Consequently,
they affect the system comprehension and increase the cost and maintenance effort.
This implies that developers need to pay attention to this agglomeration type when
doing their maintenance activities. Consequently, automatic detection tools should
consider the presence of such agglomerations in the source code in order to better
support development activities. We also observe from our analysis that Homogeneous
Agglomerations have a significant presence on the source code, and they indeed impact
software modularity. This evidence implies that developers need to pay attention to
how code smells interact (forming an agglomeration) when modifying the code, since
these relations may be complex.

Another analysis worth discussing is the varying number of smells and agglomer-
ations present in both datasets. Figure 8 shows how the smells are distributed on the
systems in order to mitigate some of the bias created by the difference in the size of
the datasets. Figure 8 presents four sets of boxplots, one set for each of the analyzed
smells. For each set, we present two boxplots representing the percentage of class-
es/methods affected by the smell on each system on the Qualita Corpus (QC) and
GitHub (GH) dataset.

For the FE smell (FE.QC and FE.GH), we can observe that the difference in the
frequency is very high, with a median of 3% for Qualita Corpus (FE.QC) and about
0.7% for GitHub (FE.GH). This was the highest difference in the median frequency
for all analyzed smells, followed by RB, which for Qualita Corpus was about 3.5%
(RB.QC), and for GitHub, it was 0.75% (RB.GH). For LM and LC, we obtained a
similar median value. For the LM, the frequency, in general, was about 0.4% for both
datasets (LM.QC and LM.GH). Meanwhile, for LC, the difference in the median values
was less than 1% (LC.QC and LC.GH).

Consequently, for two out of four smells, we have a similar distribution (LM and
LC), while for FE and RB their frequency distribution was different, and they may
have directly influenced the results found. One reason for this result may be the system
domain and size. Tables 1 and 2 reflect these aspects. In the Qualita Corpus (Table 1),
most systems had more than 20KLOC, while in the GitHub (Table 2) most systems
had 5KLOC to 10KLOC. However, since we have found that most of the results hold
for both datasets, except the impact of Heterogeneous Agglomerations, we believe
these factors did not represent a critical bias to our results. Our intention for the
creation of the GitHub dataset was to vary sizes, domains, and levels of maturity,
beyond verifying if the newest techniques used in open-source development influence
our results.

Other factors that may be affecting our results are the different levels of system
maturity and the practices adopted in the open-source community. For instance, the
systems of the Qualita Corpus dataset were obtained in 2013, while the GitHub ones
have been currently maintained and evolved. This difference in the time span ranges
different open source development techniques and quality criteria, such as refactorings,
code styles, tool support, code review, gate keeping and testing [65, 66]. For example,
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Fig. 8: Participation of Each Smell on the Selected Systems For Each Dataset

GitHub allows developers and bots to recommend changes and refactorings to pull
requests, increasing the code quality and code style guidelines [16, 38, 67, 68, 69, 70].
Consequently, these different ecosystems practices may directly impact the presence
of code smells. This seems the case for the Heterogeneous in-depth analysis of the
GitHub dataset.

7 Threats to Validity

This section presents the threats to the validity of our work, organized as suggested
by Wohlin [71].

Internal Validity. One possible threat to the internal validity is the metrics used
in our analysis. To mitigate this threat, we used hypothesis testing. We used Mann-
Whitney U to test where the distribution of the metrics was equal for the different
types of agglomerations. We opted for using the Mann-Whitney U test since our data
does not follow a normal distribution. In cases where we have less than eight instances,
mainly on the heterogeneous analysis, the algorithm is parametrized to make the
necessary corrections. We also combine the test with Bonferroni Correction, given that
we are comparing more than two categories at the same time. Finally, we calculate
the Cliff’s Delta, a measurement of effect size to provide us information on which
distribution has higher metrics values.

We selected four smells for our analysis, which may also be a threat to the internal
validity of our study. We have evaluated two smells at the class level and two smells
at the method level. We selected them considering previous works that confirmed
their high impact [9, 12, 13, 14, 15, 72, 26]. Thus, we believe that we have covered
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relevant smells for practitioners. However, we are aware that the obtained results for
their impact on modularity may not hold for agglomerations formed by other types of
smells. Notice that the same is valid for the selection of the modularity metrics. We
also selected the used metrics, influenced by their use in the literature [21, 59] and
evidence of its correlation with the modularity aspects [13, 60].

Construction Validity. To classify a smelly/non-smelly code fragment, we relied
on a set of automatic detection tools widely used in the literature [21] and composed
of different detection strategies. However, we are aware that some code fragments
may be misclassified as smelly/non-smelly. To mitigate this threat: (i) we previously
manually validated a sample of code smells with developers in order to understand
how accurate our strategy is [33]; (ii) we selected the tools according to the strategy
they used for the smell identification, avoiding using tools that used in their detection
strategy the analyzed metrics; (iii) we consider as smelly if at least two out of three
tools detect the instance as positive. Thus, the bias created by the tools is mitigated in
the voting system (see Section 3.5). We then believe we mitigate any bias introduced
in the construction of the dataset.

External Validity. The results of the paper depend directly on how the dataset
was constructed. To achieve a more generalizable result, we opted to create a new
dataset that contains systems from different sizes and domains. In both phases of our
study, we have extracted information about 30 open source Java systems, 20 from
Qualita Corpus and 10 from GitHub. However, we cannot claim the results generalize
for other systems and languages. We selected a different number of systems from two
datasets, Qualita Corpus and GitHub, which might be a threat. The Qualita Corpus
has two times more classes and methods than GitHub. Moreover, the systems in the
Qualita Corpus are older than the GitHub ones, presenting different levels of maturity,
sizes, and domains. However, we aimed to explore whether the different practices in
both current open-source development datasets affect the agglomerations. We also
highlight that using a different set of metrics may lead to different results. However, we
present initial evidence that agglomerations in general are more harmful to modularity
than classes with only one smell. Thus, they should be explored in depth in different
settings. Even though the generalization of the study findings is limited to the smells
and metrics we selected, we provided a detailed research methodology, allowing the
replication of the study steps to investigate other smells and metrics.

Conclusion Validity. To better analyze our results, we first discussed the individual
results for each dataset, and later compared their agreement. We carefully analyzed
our data. When analyzing the results found, we presented and focused on the per-
centage of participation of agglomerations according to the dataset. Moreover, in the
discussion section, we evaluated how the smells found are distributed by the system
in each dataset. Since we are dealing with a large volume of data, we used consoli-
dated algorithms from the R and Python languages. To avoid errors in transcription,
all scripts and data were revised several times to ensure their correctness. Moreover,
to ensure the replicability of our results, all scripts are available in our supplementary
material [37].
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8 Related Work

Several studies aimed to understand the relationship between code smells and their
co-occurrence [18, 19, 22, 24, 25, 28, 31, 73]. In their book, Lanza and Marinescu [18]
identified that code smells are related to each other, introducing the Collaboration
Disharmonies concept, in which design flaws interact and affect several entities at once.
To identify such relationships, the authors used metrics of coupling. In this work, our
goal is to understand how agglomerations can impact software modularity.

Oizumi et al. [19] studied how code anomalies relationships help developers identify
design problems, and found that some agglomerations are related to design problems.
Palomba et al. [9] found that when a class has more than one smell, they are more
prone to faults and changes. Hamdi et al. [74] identified code smell agglomerations
on Android applications. The authors considered agglomerations formed by smells
specific to Android apps and Object-oriented smells. We complement these works by
presenting evidence of how agglomerations on Java projects may impact the source
code modularity.

Oizumi et al. [31] studied the relationship between agglomerations and architec-
tural problems in seven systems. The authors found that most of the architectural
problems are related to agglomerations, concluding that they are better at indicating
the presence of such problems. Fontana et al. [73] studied how code smell and architec-
ture smells correlate. They have found strong correlations for only a few of the analyzed
systems. Differently from these works, our focus is on identifying object-oriented code
smell agglomerations, and we do not evaluate system architecture.

Martins et al. [32] studied how code smell agglomeration’s refactoring impacted the
metric values of three industrial systems. Beyond identifying which aspects of qual-
ity the refactoring improved, the authors also asked developers which agglomerations
were the hardest to remove. Vidal et al. [75] proposed criteria to rank the agglomer-
ations, considering their type and their modifiability. These criteria were evaluated,
considering how these agglomerations help developers to identify architectural prob-
lems. In this work, we focus on understanding if the agglomerations in the same class
have different behavior in terms of modularity metrics.

Lozano et al. [28] studied the life-cycle of code smell agglomerations, i.e., when
code smells co-exist and co-disappear. Palomba et al. [25] investigated code smell co-
occurrence using association rules in 30 systems. Later, Palomba et al. [27] investigated
several system versions to understand how agglomerations behave in the source code.
The authors found that most smelly classes contain agglomerations, but they tend to
disappear together when removed from the code.

Yamashita and Moonen [30] investigated the impact of code smell agglomerations
on the source code maintainability using Principal Component Analysis (PCA). The
authors identified 15 smells using one detection tool. They found that certain types
of agglomerations impact the maintenance activity. Even though we use a different
technique, we complement this work by providing evidence that agglomerations also
impact software modularity.

Walter et al. [22] evaluated code smell agglomerations on the Qualita Corpus [34],
raising evidences that the system domain affects the result found. They also presented
a comparison between the new agglomerations found by them and those that were
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already found in the literature. The authors used 9 tools to detect 14 smells. They
separated their dataset to mitigate tool bias. However, their separation is not con-
sistent for all smells due to the number of tools that detect them. We complement
this work by presenting an analysis of how agglomerations impact modularity at two
levels: a general one, and an in-depth analysis of the Heterogeneous Agglomerations.
We also use a voting system to mitigate the tools bias, using 3 tools for each smell
analyzed. Furthermore, we include a novel type of agglomeration in our analysis: the
homogeneous ones.

In this paper, we extend the knowledge from previous work [18, 19, 22, 24, 25,
28, 31]. Differently from other authors, we focus not only on identifying the agglom-
erations but also on their modularity impact. In other words, we aim to understand
how agglomerations can impact different aspects of modularity. We also further clas-
sified them considering their different types, i.e., Heterogeneous and Homogeneous
Agglomerations.

9 Conclusions and Future Works

This work aimed at evaluating how code smell agglomerations impact the source
code modularity. For this purpose, we compare the results found for the 20 systems
extracted on Qualita Corpus [34] from previous study [33], with an additional min-
ing of 10 popular systems from GitHub. This analysis allowed us to understand if the
results hold for different datasets, and how the technology gap influences the results
found. We then collected the modularity metrics and the code smells evaluated (LC,
RB, LM, and FE). In order to characterize if agglomerations are indeed frequent on
the systems, we have used frequent itemset mining to detect the Heterogeneous ones,
and frequency statistics to identify the Homogeneous ones. To calculate the impact,
we used a hypothesis test, which provides us with information about the differences
between the behavior of the metrics for different agglomeration types. These analy-
ses allowed us to identify which agglomeration impacts the different aspects of the
modularity of the systems.

Our main results and contributions are: (i) we have found that Homogeneous
Agglomerations have a significant presence in both datasets, but mainly the Homo-
geneous FE one; (ii) for both datasets, the itemsets LC+FE and FE+LM were
the most frequent agglomerations in the code; (iii) Heterogeneous Agglomerations
impact modularity the most, except on the inheritance aspect; (iv) both Homogeneous
Agglomerations under study impacts the complexity and coupling when compared to
Isolated Classes; (v) we did not find a statistical difference between the different types
of Heterogeneous for both datasets.

This work provides initial evidence of how agglomerations impact the source code
modularity. This information can be used to prioritize the refactoring of the most
harmful agglomerations. In future work, we plan to expand our dataset to include
systems from other domains and replicate the ensemble method to evaluate other
smells. We also plan to expand our analysis to provide evidence that agglomerations
impact fault and change proneness. We also highlight the necessity of investigating
code smell agglomerations at: (i) industrial settings, since industrial systems may use
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different development processes, and these practices may affect directly the presence of
agglomerations; (ii) other programming languages rather than Java, because different
languages have different specificity, and consequently, they have different types of
smells than Java ones. Consequently, their impact should be further evaluated.

Declarations

Funding. This research was partially supported by Brazilian funding agencies:
CAPES, PROEX, 88887.595966/2020-00.

Declaration of Interest. We declare that we have not any conflict of interest
when submitting this manuscript to Software Quality Journal.

Supplementary Data. All of the available data will be published under GitHub
and are currently available at [37].

Consent. All the authors in this manuscript consent to its publication, and have
read the journal guidelines.

Contributions. Amanda Santana: Study Design, Data Analysis, Manuscript
Writing, Review. Juliana Alves Pereira: Critical Review. Eduardo Figueiredo: Study
Design, Critical Review. Alessandro Garcia: Critical Review.

References

[1] Fowler M. Refactoring: Improving the Design of Existing Code. Addison-Wesley;
1999.

[2] Xia X, Bao L, Lo D, Xing Z, Hassan AE, Li S. Measuring Program Compre-
hension: A Large-Scale Field Study with Professionals. IEEE Transactions on
Software Engineering. 2018 Oct;44(10):951–976.

[3] Yamashita A, Counsell S. Code smells as system-level indicators of maintainabil-
ity: An empirical study. Journal of Systems and Software. 2013;86(10):2639–2653.

[4] Sjøberg DIK, Yamashita A, Anda BCD, Mockus A, Dyb̊a T. Quantifying the
Effect of Code Smells on Maintenance Effort. IEEE Transactions on Software
Engineering. 2013 Aug;39(8):1144–1156.

[5] Tufano M, Palomba F, Bavota G, Oliveto R, Di Penta M, De Lucia A, et al.
When and Why Your Code Starts to Smell Bad. In: 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering. vol. 1; 2015. p. 403–414.

[6] Kerievsky J. Refactoring to Patterns. Pearson Higher Education; 2004.

[7] Yamashita A, Moonen L. Do developers care about code smells? An exploratory
survey. In: 2013 20th Working Conference on Reverse Engineering (WCRE); 2013.
p. 242–251.

31
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