Interacao Humano-Dados no contexto de recomendacao para
desenvolvedores de projetos de software
open-source do GitHub

Kattiana Constantino', Raquel Prates?, e Eduardo Figueiredo?

!Universidade Federal dos Vales do Jequitinhonha e Mucuri
2Universidade Federal de Minas Gerais

{kattiana.constantino}Qufvjim.edu.br

Abstract. Active collaboration is essential for the success of software projects
throughout the development lifecycle. Unfortunately, on social coding platforms
such as GitHub, it is still challenging for developers to identify potential colla-
borators and thus improve the quality of contributions. To this end, we imple-
mented developer recommendation strategies, supported by a visual and inte-
ractive tool, called COOPFINDER, fo connect collaborators based on a set of
files of interest to them. In addition, the tool provides metadata and links diffe-
rent attributes that cannot be analyzed using the GitHub interface, facilitating
the decision-making of collaborators.

Resumo. A colaboracdo ativa é essencial para o sucesso de projetos de soft-
ware em todo o ciclo de vida do desenvolvimento. Infelizmente, em platafor-
mas de codificacdo social, como o GitHub, ainda é desafiador para os de-
senvolvedores identificar potenciais colaboradores e por conseguinte, melhorar
a qualidade das contribuicoes. Para esse fim, implementamos estratégias de
recomendagdo de desenvolvedores, apoiadas por uma ferramenta visual e inte-
rativa, chamada COOPFINDER, para conectar colaboradores com base em um
conjunto de arquivos de seus interesses. Além disso, a ferramenta fornece me-
tadados e vincula diferentes atributos que ndo podem ser analisados usando a
interface do GitHub, facilitando a tomada de decisdo dos colaboradores.

1. Introducao

Os desenvolvedores de software deveriam colaborar em todos os estdgios do ciclo de
vida do software para criar produtos de qualidade. No entanto, para grandes projetos,
com centenas de desenvolvedores dindmicos, como varios projetos de codigo aberto bem-
sucedidos, pode ser muito complexo encontrar desenvolvedores com os mesmos interes-
ses e, assim, obter colaboracdes adequadas e novos insights. Recursos e esforcos podem
ser desperdicados no contexto do projeto, desencorajando desenvolvedores a permanecer.
Pode ser custoso gerenciar tantas contribui¢des, o que € outra questao para o mantenedor
que deseja aproveitar essa pequena, modesta, mas util contribuicdo feita por um desen-
volvedor voluntario no menor tempo possivel.

Este trabalho tem como objetivo discutir a Interagdo Humano-Dados no con-
texto de recomendacdes para desenvolvedores de software open-source, do GitHub. O
proposito € que desenvolvedores, lideres, mantenedores e pesquisadores, na tomada

Developer

Source Feature Extraction Changed File Scoring FeEmmee e

Strategy 1 Extractin i @
g name of changed files @ L
-

based on the number of commits

) ol
?
ol

Strategy 2 Extracting name of changed files
based on the number of lines of code @ -
modified (additions and deletions) Y

TF-IDF Algorithm Cosine Similarity Algorithm

Figura 1. Duas estratéegias de recomendacao de desenvolvedores
[Constantino et al. 2023a].

de decisdo, tenham um maior entendimento sobre como melhorar as oportunidades de
colaboracdo entre desenvolvedores em um projeto especifico.

2. CoopFinder - Ferramenta de Recomendacao de Desenvolvedores

As estratégias para recomendar desenvolvedores sdo suportadas pelo COOPFINDER, uma
ferramenta de protétipo que aprimora as oportunidades de colaboragdo em um projeto
com base em arquivos co-alterados. Esses arquivos co-alterados referem-se a arquivos
que dois ou mais desenvolvedores modificaram. COOPFINDER € um aplicativo da web
interativo e visualmente rico que ajuda a conectar desenvolvedores desses arquivos.

COOPFINDER implementa duas estratégias de recomendacdo do desenvolvedor,
a saber, ESTRATEGIAS 1 e 2, que sdo baseadas em arquivos co-alterados. Para Es-
TRATEGIA 1, o “nimero de commits” foi extraido para determinar a frequéncia de
modificacdes de arquivo por um desenvolvedor. Para ESTRATEGIA 2, 0 “nimero de
linhas de cédigo alteradas (LoC)” foi extraido. Esta métrica calcula a soma de linhas
de cddigo adicionadas e removidas por um desenvolvedor em um arquivo especifico
[Constantino et al. 2023a]. A Figura 1 apresenta uma visao geral das etapas necessarias
para recomendar um desenvolvedor a outro desenvolvedor no projeto de software, como
a seguir.

Etapa 1 — Extracao de recursos: O histdrico de modificagdes feito por todos os
desenvolvedores em um projeto foi extraido em relacao as entradas, conforme ilustrado na
Figura 1. A plataforma GitHub, uma rede social que hospeda projetos e suporta o modelo
fork & pull, foi utilizada para esse prop6sito. Os desenvolvedores do GitHub criam cépias
do repositdrio original e fazem alteracOes em suas respectivas copias. Depois que essas
alteracoes sao finalizadas, eles t€ém a opcao de envia-las de volta ao repositdrio original
por meio de uma solicitacao de pull.

Etapa 2 — Pontuacao de arquivos alterados: Realizamos mineracao de arquivos
para cada desenvolvedor do projeto extraindo o conjunto de arquivos co-alterados. Esse
conjunto de arquivos foi entdo classificado usando o algoritmo Term Frequency — Inverse
Document Frequency (TF-IDF) [Salton 1989]. A classifica¢do resultante de arquivos
relevantes para cada desenvolvedor é apresentada na Figura 1. Repetimos essa etapa para
ambas as estratégias, produzindo classificacdes diferentes para cada desenvolvedor.

Etapa 3 — Modelo de recomendacao do desenvolvedor: A classificacdo de ar-
quivos relevantes para cada desenvolvedor do projeto, calculada usando o modelo de

espaco vetorial, foi utilizada para calcular sua similaridade por meio da métrica de cos-
seno amplamente usada [Salton 1971, Salton and Harman 2003]. Essa métrica tem sido
amplamente empregada [Rahman et al. 2016, Franco et al. 2019] devido a sua capacidade
de quantificar a similaridade de dois objetos [Ricci et al. 2011]. Repetimos essa etapa
para cada estratégia, conforme mostrado na Figura 1.

2.1. Tecnologias de implementacao

COOPFINDER € uma ferramenta Web, construida sobre uma arquitetura cliente-servidor,
aproveitando técnicas de visualiza¢do eficazes para aprimorar a experiéncia do usuério. O
lado do servidor é desenvolvido usando Python 3!, com o suporte das bibliotecas scikit-
learn?, uma biblioteca de aprendizado de maquina robusta e gratuita para Python. Para
as visualizacdes em COOPFINDER, integramos HighCharts®, uma poderosa biblioteca
JavaScript especializada em visualizacdo de dados analiticos. Esta biblioteca facilita a
manipulacdo de documentos com base em dados, contribuindo para uma interface de
usudrio atraente e informativa. Para garantir uma experi€ncia de usudrio continua e inte-
rativa, incorporamos componentes Bootstrap Framework*. Esses componentes abrangem
uma variedade de folhas de estilo e plugins jQuery’, permitindo a cria¢io de uma inter-
face responsiva e dinamica. Nossa selecdo dessas tecnologias € proposital, motivada pelo
compromisso em fornecer uma experiéncia dinamica de exploragdo e visualizacdo para
NOSSOS USUdrios.

2.2. Interface e interacao

A Figura 2 mostra a tela do COOPFINDER relacionadas a lista de colaboradores de um
projeto selecionado. Esta lista inclui todos os colaboradores que modificaram quaisquer
arquivos em suas copias (fork) de um projeto selecionado do GitHub, conforme descrito
na Secdo 2. Na Figura 2, o Quadro (A) exibe informag¢des do projeto, como o nome do re-
positorio, nimero de estrelas, nimero de bifurcacdes e nimero de problemas abertos, aos
quais os colaboradores pertencem. O Quadro (B) apresenta uma tabela de todos os colabo-
radores do projeto selecionado. Para cada colaborador, a tabela fornece suas informagdes
de desenvolvedor, incluindo seu avatar, nome, bifurcacdo, niimero de seguidores, nimero
de seguidores, nimero de confirmagdes no upstream, nimero de confirmagdes nao mes-
cladas e a data de sua ultima confirmacao. O quadro (C) exibe a atividade do cédigo para
commits upstream e nao mesclados, juntamente com a ultima data de commit. Isso ajuda
os usudrios a avaliar o status dos colaboradores no projeto, incluindo seu nivel de atividade
com base em commits mesclados e na dltima data de commit. Commits ndo mesclados
recentes podem sinalizar uma necessidade de assisténcia. Além disso, os mantenedores
podem revisar os interesses dos colaboradores no projeto ou criar equipes em torno de
seus arquivos co-alterados. Finalmente, o botdo “Executar” executa os algoritmos das
recomendagdes e os resultados sdo apresentados da seguinte forma.

A figura 2 descreve uma captura de tela do COOPFINDER com uma lista de co-
laboradores recomendados para o desenvolvedor alvo, que pode variar dependendo da

"https://www.python.org/
Zhttps://scikit-learn.org/stable/index.html
3https://www.highcharts.com/
“https://getbootstrap.com/
Shttps://jquery.com

a
0

vvvvvvvvvvvv 6 28 2] 2021-04-23 01:13:50

150 7 13] 2021-03-04 02:10:13

1 1 o = 2021-02:08 02:39:36

ssssssssssss 8 1 5 2 2019-10-12 08:14:50

22 6 50 2 2021-10-08 00:51:10

13 85 22 = 20211021 07:5754

4 s 4 19 2021-10:24 110742

Developer 0 o7 st 3 18 2020-12-13 11:22:27

)
)
)
]
)
)
J
)
)
)

uuuuuuuuuuuuu 8 2 1 16 2021-08:05 03:35:07

Name. Fork Name Followers Following Merged Commits Unmerged Commits Last Commit Date

Snowing 110 10 of 143 entres Provious |12 3 4 &

H
g

Figura 2. Visao geral das informacGes dos colaboradores de um projeto es-
pecifico do GitHub [Constantino and Figueiredo 2022].

estratégia selecionada e da classificacdo de arquivos relevantes para cada desenvolve-
dor do projeto.O quadro (D) exibe informagdes do projeto, como o nome do repositorio,
nimero de estrelas, nimero de bifurcagdes e nimero de problemas abertos, aos quais
os colaboradores recomendados pertencem. O quadro (E) apresenta informagdes sobre o
desenvolvedor alvo, como seu nome, avatar, data do dltimo commit, nimero total de com-
mits, seguidores e seguidores. Por fim, o quadro (F) mostra uma lista de desenvolvedores
recomendados com interesses semelhantes com base em arquivos co-alterados.

No quadro (F), os usudrios podem selecionar um dos colaboradores recomendados
para comparar com o desenvolvedor alvo mostrado no quadro (E). Uma vez selecionado,
o quadro (G) exibe os dois colaboradores escolhidos junto com seus nomes e bifurcagdes,
vinculados ao seu perfil do GitHub. O Frame (H) permite que os usudrios analisem 0s
arquivos comuns dos dois desenvolvedores. Por exemplo, “t/discovery/nacos.t” e “api-
six/discovery/nacos.lua” sao arquivos comuns que ambos os desenvolvedores. Eles estao
interessados e familiarizados com esses arquivos (Figura 3). Finalmente, no Frame (I),
¢ apresentada a expertise do desenvolvedor recomendado (linguagem de programacao)
relacionada ao projeto em foco. Essa expertise € calculada como uma porcentagem do
numero total de arquivos alterados em cada linguagem de programacdo. Observe que
esse recurso nao € o foco principal do nosso trabalho atual. No entanto, deixamos esse
espaco aberto para possiveis caminhos para pesquisas futuras. Outros trabalhos, como
[Oliveira et al. 2019, Oliveira et al. 2020, de Neira et al. 2018], exploraram a expertise
dos desenvolvedores.

3. Por que recomendar desenvolvedores?

Todas as contribuicdes devem ser apreciadas e encorajadas [Pham et al. 2013,
Gousios et al. 2014, Pinto et al. 2016]. Trabalhos anteriores mostram que os desen-
volvedores geralmente pedem ajuda aos membros da equipe principal, que devem
compartilhar sua motivacdo, conhecimento e experi€éncia [Minto and Murphy 2007,
Kononenko et al. 2016]. No entanto, isso pode ndo funcionar sempre, pois os mem-
bros da equipe principal podem estar muito ocupados para responder [Yu et al. 2015,
Gousios et al. 2015, Steinmacher et al. 2018]. Assim, outros desenvolvedores experien-

Repositry Stars Forks 5 Openlssues =2
apachelapisix 7565 1355 am

RECOMMENDED COLLABORATORS @
Werged — LastCommit
Name Fork Commis Commits oate
,,,,,,,,,
o developer 2 fork 2 ° 2 2020.07-28
< eloper 09:44:18
o226
o [l 45 [2021-11-15
S p— O comerms -
Total Commit = \)7‘— 050734
7 08:14:50
 Folowing
Fi3Y [amvoperiann (3
ot arge L0 P PROGRAMMING LANGUAGE
ot
=
Expertise of tzssangglass
GOMMON RELEVANT FILES

Figura 3. Overview of developer recommendations and their aggregated informa-
tion [Constantino and Figueiredo 2022].

tes fora da equipe principal também podem ser uteis e podem estar mais disponiveis.
Porém, como saber sobre esses em um projeto com milhares e milhares de desenvolvedo-
res? Nesse contexto, enquanto um pequeno grupo de desenvolvedores podem ficar sobre-
carregado [Avelino et al. 2016, Ferreira et al. 2017] outros podem ficar ficam sem oportu-
nidades de participar de forma efetiva do projeto [Tamburri et al. 2015]. Essas situagdes
podem levar a frustragdo e encorajar os desenvolvedores a deixar o projeto. Esses pro-
blemas estdo relacionados a como os desenvolvedores interagem entre si € cOMO €sses
relacionamentos afetam o projeto [Constantino et al. 2020, Constantino et al. 2021]. Por-
tanto, € importante fomentar os lacos entre os desenvolvedores do projetos, apresentar da-
dos importantes para os desenvolvedores e mantenedores do projeto que viabilizem esse
engajamento no projeto. Portanto, propomos as estratégias de recomendacao de desenvol-
vedores apoiadas por uma ferramenta visual e interativa para conectar colaboradores com
base em um conjunto de arquivos de seus interesses [Constantino and Figueiredo 2023].

Além disso, a ferramenta fornece metadados e vincula diferentes atributos que nao
podem ser analisados usando apenas a interface do GitHub. Além das recomendagdes
de desenvolvedores, a ferramenta também oferecer suporte aos mantenedores do pro-
jeto [Constantino et al. 2023b, Constantino et al. 2024]. Por exemplo, os mantenedores
poderdo acompanhar a evolucdo das contribui¢des dos desenvolvedores e também desco-
brir novos contribuidores, além de ndo perder contribui¢cdes preciosas, uma vez que eles
conseguem acompanhar a data das ultimas contribuicdes dos desenvolvedores. Assim,
COOPFINDER pode ser para a tomanda de decisdo, como por exemplo, encontrar no-
vos desenvolvedores para colaborar e/ou gerenciar um projeto, montar equipes com base
em seus interesses comuns. Além disso, COOPFINDER também pode ajudar a encontrar
novos desenvolvedores ou colaboradores para contribuirem no desenvolvimento, ou em
outras atividades, tais como testes ou documentagao.

Referéncias

Avelino, G., Passos, L., Hora, A., and Valente, M. T. (2016). A novel approach for
estimating truck factors. In Proc. of the 24th International Conference on Program
Comprehension (ICPC), pages 1-10.

Constantino, K., Belém, F., and Figueiredo, E. (2023a). Dual analysis for helping deve-
lopers to find collaborators based on co-changed files: An empirical study. Journal of
Software: Practice and Experience (JSPE), pages 1-27.

Constantino, K. and Figueiredo, E. (2022). Coopfinder: Finding collaborators based on
co—changed files. In Proc. of the IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), pages 1-3.

Constantino, K. and Figueiredo, E. (2023). Finding collaborations based on co-changed
files. In Anais Estendidos do XVIII Simpdosio Brasileiro de Sistemas Colaborativos,
pages 57-66.

Constantino, K., Prates, R., and Figueiredo, E. (2023b). Recommending collaborators
based on co—changed files: A controlled experiment. In Proc. of the 18th Brazilian
Symposium on Collaborative Systems, pages 154—168.

Constantino, K., Prates, R., and Figueiredo, E. (2024). An user evaluation of a col-
laborator recommender based on co-changed files. Journal on Interactive Systems,
15(1):157-169.

Constantino, K., Souza, M., Zhou, S., Figueiredo, E., and Kistner, C. (2021). Perceptions
of open-source software developers on collaborations: An interview and survey study.
Journal of Software: Evolution and Process (JSEP), 33:€2393.

Constantino, K., Zhou, S., Souza, M., Figueiredo, E., and Kaistner, C. (2020). Unders-
tanding collaborative software development: An interview study. In Proc. of the 15th
International Conference on Global Software Engineering (ICGSE), page 55-65.

de Neira, A. B., Steinmacher, 1., and Wiese, 1. S. (2018). Characterizing the hyperspeci-
alists in the context of crowdsourcing software development. Journal of the Brazilian
Computer Society (JBCS), 24(1):1-16.

Ferreira, M., Valente, M. T., and Ferreira, K. (2017). A comparison of three algorithms
for computing truck factors. In Proc. of the 25th International Conference on Program
Comprehension (ICPC), pages 207-217.

Franco, M. F.,, Rodrigues, B., and Stiller, B. (2019). Mentor: The design and evalua-
tion of a protection services recommender system. In Proc. of the 15th International
Conference on Network and Service Management (CNSM), pages 1-7.

Gousios, G., Pinzger, M., and Deursen, A. v. (2014). An exploratory study of the pull-
based software development model. In Proc. of the 36th International Conference on
Software Engineering (ICSE), pages 345-355.

Gousios, G., Zaidman, A., Storey, M.-A., and Deursen, A. v. (2015). Work practices
and challenges in pull-based development: The integrator’s perspective. In Proc. of
the 37th International Conference on Software Engineering (ICSE), volume 1, pages
358-368.

Kononenko, O., Baysal, O., and Godfrey, M. W. (2016). Code review quality: How de-
velopers see it. In Proc. of the 38th International Conference on Software Engineering
(ICSE), pages 1028-1038.

Minto, S. and Murphy, G. (2007). Recommending emergent teams. In Proc. of the 4th
International Conference on Mining Software Repositories (MSR), pages 5-5.

Oliveira, J., Pinheiro, D., and Figueiredo, E. (2020). Jexpert: A tool for library expert
identification. In Proc. of the 34th Brazilian Symposium on Software Engineering
(SBES), pages 386—-392.

Oliveira, J., Viggiato, M., and Figueiredo, E. (2019). How well do you know this library?
mining experts from source code analysis. In Proc. of the XVIII Brazilian Symposium
on Software Quality (SBQS), pages 49-58.

Pham, R., Singer, L., Liskin, O., Figueira Filho, F., and Schneider, K. (2013). Creating
a shared understanding of testing culture on a social coding site. In Proc. of the 35th
International Conference on Software Engineering (ICSE), pages 112—-121.

Pinto, G., Steinmacher, 1., and Gerosa, M. (2016). More common than you think: An
in-depth study of casual contributors. In Proc. of the 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), volume 1, pages 112-123.

Rahman, M. M., Roy, C. K., Redl, J., and Collins, J. A. (2016). Correct: Code reviewer
recommendation at github for vendasta technologies. In Proc. of the 31st International
Conference on Automated Software Engineering (ASE), page 792-797.

Ricci, F., Rokach, L., and Shapira, B. (2011). Introduction to recommender systems
handbook. In Recommender Systems Handbook, pages 1-35.

Salton, G. (1971). The smart retrieval system: Experiments in automatic information
retrieval.

Salton, G. (1989). Automatic text processing: The transformation, analysis, and retrieval
of. Reading: Addison-Wesley, 169.

Salton, G. and Harman, D. (2003). Information retrieval. In Encyclopedia of Computer
Science.

Steinmacher, 1., Pinto, G., Wiese, 1. S., and Gerosa, M. A. (2018). Almost there: A
study on quasi-contributors in open-source software projects. In Proc. of the 40th
International Conference on Software Engineering (ICSE), pages 256-266.

Tamburri, D. A., Kruchten, P., Lago, P., and Van Vliet, H. (2015). Social debt in software
engineering: Insights from industry. Journal of Internet Services and Applications
(JISA), 6(1):1-17.

Yu, Y., Wang, H., Filkov, V., Devanbu, P., and Vasilescu, B. (2015). Wait for it: Deter-
minants of pull request evaluation latency on github. In Proc. of the 12th International
Conference on Mining Software Repositories (MSR), pages 367-371.

