
Interação Humano-Dados no contexto de recomendação para
desenvolvedores de projetos de software

open-source do GitHub

Kattiana Constantino1, Raquel Prates2, e Eduardo Figueiredo2

1Universidade Federal dos Vales do Jequitinhonha e Mucuri

2Universidade Federal de Minas Gerais

{kattiana.constantino}@ufvjm.edu.br

Abstract. Active collaboration is essential for the success of software projects
throughout the development lifecycle. Unfortunately, on social coding platforms
such as GitHub, it is still challenging for developers to identify potential colla-
borators and thus improve the quality of contributions. To this end, we imple-
mented developer recommendation strategies, supported by a visual and inte-
ractive tool, called COOPFINDER, to connect collaborators based on a set of
files of interest to them. In addition, the tool provides metadata and links diffe-
rent attributes that cannot be analyzed using the GitHub interface, facilitating
the decision-making of collaborators.

Resumo. A colaboração ativa é essencial para o sucesso de projetos de soft-
ware em todo o ciclo de vida do desenvolvimento. Infelizmente, em platafor-
mas de codificação social, como o GitHub, ainda é desafiador para os de-
senvolvedores identificar potenciais colaboradores e por conseguinte, melhorar
a qualidade das contribuições. Para esse fim, implementamos estratégias de
recomendação de desenvolvedores, apoiadas por uma ferramenta visual e inte-
rativa, chamada COOPFINDER, para conectar colaboradores com base em um
conjunto de arquivos de seus interesses. Além disso, a ferramenta fornece me-
tadados e vincula diferentes atributos que não podem ser analisados usando a
interface do GitHub, facilitando a tomada de decisão dos colaboradores.

1. Introdução
Os desenvolvedores de software deveriam colaborar em todos os estágios do ciclo de
vida do software para criar produtos de qualidade. No entanto, para grandes projetos,
com centenas de desenvolvedores dinâmicos, como vários projetos de código aberto bem-
sucedidos, pode ser muito complexo encontrar desenvolvedores com os mesmos interes-
ses e, assim, obter colaborações adequadas e novos insights. Recursos e esforços podem
ser desperdiçados no contexto do projeto, desencorajando desenvolvedores a permanecer.
Pode ser custoso gerenciar tantas contribuições, o que é outra questão para o mantenedor
que deseja aproveitar essa pequena, modesta, mas útil contribuição feita por um desen-
volvedor voluntário no menor tempo possı́vel.

Este trabalho tem como objetivo discutir a Interação Humano-Dados no con-
texto de recomendações para desenvolvedores de software open-source, do GitHub. O
propósito é que desenvolvedores, lı́deres, mantenedores e pesquisadores, na tomada



Extracting name of changed files 

based on the number of commits

Extracting name of changed files

based on the number of lines of code 


modified (additions and deletions)


Source Feature Extraction Changed File Scoring

TF-IDF Algorithm Cosine Similarity Algorithm

Developer
Recommendations

3
1

2

3
1

2

Strategy 1

Strategy 2

Figura 1. Duas estratégias de recomendação de desenvolvedores
[Constantino et al. 2023a].

de decisão, tenham um maior entendimento sobre como melhorar as oportunidades de
colaboração entre desenvolvedores em um projeto especı́fico.

2. CoopFinder - Ferramenta de Recomendação de Desenvolvedores

As estratégias para recomendar desenvolvedores são suportadas pelo COOPFINDER, uma
ferramenta de protótipo que aprimora as oportunidades de colaboração em um projeto
com base em arquivos co-alterados. Esses arquivos co-alterados referem-se a arquivos
que dois ou mais desenvolvedores modificaram. COOPFINDER é um aplicativo da web
interativo e visualmente rico que ajuda a conectar desenvolvedores desses arquivos.

COOPFINDER implementa duas estratégias de recomendação do desenvolvedor,
a saber, ESTRATÉGIAS 1 e 2, que são baseadas em arquivos co–alterados. Para ES-
TRATÉGIA 1, o “número de commits” foi extraı́do para determinar a frequência de
modificações de arquivo por um desenvolvedor. Para ESTRATÉGIA 2, o “número de
linhas de código alteradas (LoC)” foi extraı́do. Esta métrica calcula a soma de linhas
de código adicionadas e removidas por um desenvolvedor em um arquivo especı́fico
[Constantino et al. 2023a]. A Figura 1 apresenta uma visão geral das etapas necessárias
para recomendar um desenvolvedor a outro desenvolvedor no projeto de software, como
a seguir.

Etapa 1 – Extração de recursos: O histórico de modificações feito por todos os
desenvolvedores em um projeto foi extraı́do em relação às entradas, conforme ilustrado na
Figura 1. A plataforma GitHub, uma rede social que hospeda projetos e suporta o modelo
fork & pull, foi utilizada para esse propósito. Os desenvolvedores do GitHub criam cópias
do repositório original e fazem alterações em suas respectivas cópias. Depois que essas
alterações são finalizadas, eles têm a opção de enviá-las de volta ao repositório original
por meio de uma solicitação de pull.

Etapa 2 – Pontuação de arquivos alterados: Realizamos mineração de arquivos
para cada desenvolvedor do projeto extraindo o conjunto de arquivos co-alterados. Esse
conjunto de arquivos foi então classificado usando o algoritmo Term Frequency – Inverse
Document Frequency (TF–IDF) [Salton 1989]. A classificação resultante de arquivos
relevantes para cada desenvolvedor é apresentada na Figura 1. Repetimos essa etapa para
ambas as estratégias, produzindo classificações diferentes para cada desenvolvedor.

Etapa 3 – Modelo de recomendação do desenvolvedor: A classificação de ar-
quivos relevantes para cada desenvolvedor do projeto, calculada usando o modelo de



espaço vetorial, foi utilizada para calcular sua similaridade por meio da métrica de cos-
seno amplamente usada [Salton 1971, Salton and Harman 2003]. Essa métrica tem sido
amplamente empregada [Rahman et al. 2016, Franco et al. 2019] devido à sua capacidade
de quantificar a similaridade de dois objetos [Ricci et al. 2011]. Repetimos essa etapa
para cada estratégia, conforme mostrado na Figura 1.

2.1. Tecnologias de implementação

COOPFINDER é uma ferramenta Web, construı́da sobre uma arquitetura cliente-servidor,
aproveitando técnicas de visualização eficazes para aprimorar a experiência do usuário. O
lado do servidor é desenvolvido usando Python 31, com o suporte das bibliotecas scikit-
learn2, uma biblioteca de aprendizado de máquina robusta e gratuita para Python. Para
as visualizações em COOPFINDER, integramos HighCharts3, uma poderosa biblioteca
JavaScript especializada em visualização de dados analı́ticos. Esta biblioteca facilita a
manipulação de documentos com base em dados, contribuindo para uma interface de
usuário atraente e informativa. Para garantir uma experiência de usuário contı́nua e inte-
rativa, incorporamos componentes Bootstrap Framework4. Esses componentes abrangem
uma variedade de folhas de estilo e plugins jQuery5, permitindo a criação de uma inter-
face responsiva e dinâmica. Nossa seleção dessas tecnologias é proposital, motivada pelo
compromisso em fornecer uma experiência dinâmica de exploração e visualização para
nossos usuários.

2.2. Interface e interação

A Figura 2 mostra a tela do COOPFINDER relacionadas à lista de colaboradores de um
projeto selecionado. Esta lista inclui todos os colaboradores que modificaram quaisquer
arquivos em suas cópias (fork) de um projeto selecionado do GitHub, conforme descrito
na Seção 2. Na Figura 2, o Quadro (A) exibe informações do projeto, como o nome do re-
positório, número de estrelas, número de bifurcações e número de problemas abertos, aos
quais os colaboradores pertencem. O Quadro (B) apresenta uma tabela de todos os colabo-
radores do projeto selecionado. Para cada colaborador, a tabela fornece suas informações
de desenvolvedor, incluindo seu avatar, nome, bifurcação, número de seguidores, número
de seguidores, número de confirmações no upstream, número de confirmações não mes-
cladas e a data de sua última confirmação. O quadro (C) exibe a atividade do código para
commits upstream e não mesclados, juntamente com a última data de commit. Isso ajuda
os usuários a avaliar o status dos colaboradores no projeto, incluindo seu nı́vel de atividade
com base em commits mesclados e na última data de commit. Commits não mesclados
recentes podem sinalizar uma necessidade de assistência. Além disso, os mantenedores
podem revisar os interesses dos colaboradores no projeto ou criar equipes em torno de
seus arquivos co-alterados. Finalmente, o botão “Executar” executa os algoritmos das
recomendações e os resultados são apresentados da seguinte forma.

A figura 2 descreve uma captura de tela do COOPFINDER com uma lista de co-
laboradores recomendados para o desenvolvedor alvo, que pode variar dependendo da

1https://www.python.org/
2https://scikit-learn.org/stable/index.html
3https://www.highcharts.com/
4https://getbootstrap.com/
5https://jquery.com



A

B

C
Developer 1 Fork 1

Developer 3 Fork 3

Developer 2 Fork 2

Developer 4 Fork 4

Developer 6 Fork 6

Developer 5 Fork 5

Developer 7 Fork 7

Developer 9 Fork 9

Developer 8 Fork 8

Developer 10 Fork 10

Figura 2. Visão geral das informações dos colaboradores de um projeto es-
pecı́fico do GitHub [Constantino and Figueiredo 2022].

estratégia selecionada e da classificação de arquivos relevantes para cada desenvolve-
dor do projeto.O quadro (D) exibe informações do projeto, como o nome do repositório,
número de estrelas, número de bifurcações e número de problemas abertos, aos quais
os colaboradores recomendados pertencem. O quadro (E) apresenta informações sobre o
desenvolvedor alvo, como seu nome, avatar, data do último commit, número total de com-
mits, seguidores e seguidores. Por fim, o quadro (F) mostra uma lista de desenvolvedores
recomendados com interesses semelhantes com base em arquivos co-alterados.

No quadro (F), os usuários podem selecionar um dos colaboradores recomendados
para comparar com o desenvolvedor alvo mostrado no quadro (E). Uma vez selecionado,
o quadro (G) exibe os dois colaboradores escolhidos junto com seus nomes e bifurcações,
vinculados ao seu perfil do GitHub. O Frame (H) permite que os usuários analisem os
arquivos comuns dos dois desenvolvedores. Por exemplo, “t/discovery/nacos.t” e “api-
six/discovery/nacos.lua” são arquivos comuns que ambos os desenvolvedores. Eles estão
interessados e familiarizados com esses arquivos (Figura 3). Finalmente, no Frame (I),
é apresentada a expertise do desenvolvedor recomendado (linguagem de programação)
relacionada ao projeto em foco. Essa expertise é calculada como uma porcentagem do
número total de arquivos alterados em cada linguagem de programação. Observe que
esse recurso não é o foco principal do nosso trabalho atual. No entanto, deixamos esse
espaço aberto para possı́veis caminhos para pesquisas futuras. Outros trabalhos, como
[Oliveira et al. 2019, Oliveira et al. 2020, de Neira et al. 2018], exploraram a expertise
dos desenvolvedores.

3. Por que recomendar desenvolvedores?

Todas as contribuições devem ser apreciadas e encorajadas [Pham et al. 2013,
Gousios et al. 2014, Pinto et al. 2016]. Trabalhos anteriores mostram que os desen-
volvedores geralmente pedem ajuda aos membros da equipe principal, que devem
compartilhar sua motivação, conhecimento e experiência [Minto and Murphy 2007,
Kononenko et al. 2016]. No entanto, isso pode não funcionar sempre, pois os mem-
bros da equipe principal podem estar muito ocupados para responder [Yu et al. 2015,
Gousios et al. 2015, Steinmacher et al. 2018]. Assim, outros desenvolvedores experien-



D

H

I

fork 1

fork 2

fork 3

fork 4

fork 5

developer 1

developer 2

developer 3

developer 4

developer 5

developer target

developer target developer 4

developer 4

fork 4

developer target

fork target

E

F

G

Figura 3. Overview of developer recommendations and their aggregated informa-
tion [Constantino and Figueiredo 2022].

tes fora da equipe principal também podem ser úteis e podem estar mais disponı́veis.
Porém, como saber sobre esses em um projeto com milhares e milhares de desenvolvedo-
res? Nesse contexto, enquanto um pequeno grupo de desenvolvedores podem ficar sobre-
carregado [Avelino et al. 2016, Ferreira et al. 2017] outros podem ficar ficam sem oportu-
nidades de participar de forma efetiva do projeto [Tamburri et al. 2015]. Essas situações
podem levar à frustração e encorajar os desenvolvedores a deixar o projeto. Esses pro-
blemas estão relacionados a como os desenvolvedores interagem entre si e como esses
relacionamentos afetam o projeto [Constantino et al. 2020, Constantino et al. 2021]. Por-
tanto, é importante fomentar os laços entre os desenvolvedores do projetos, apresentar da-
dos importantes para os desenvolvedores e mantenedores do projeto que viabilizem esse
engajamento no projeto. Portanto, propomos as estratégias de recomendação de desenvol-
vedores apoiadas por uma ferramenta visual e interativa para conectar colaboradores com
base em um conjunto de arquivos de seus interesses [Constantino and Figueiredo 2023].

Além disso, a ferramenta fornece metadados e vincula diferentes atributos que não
podem ser analisados usando apenas a interface do GitHub. Além das recomendações
de desenvolvedores, a ferramenta também oferecer suporte aos mantenedores do pro-
jeto [Constantino et al. 2023b, Constantino et al. 2024]. Por exemplo, os mantenedores
poderão acompanhar a evolução das contribuições dos desenvolvedores e também desco-
brir novos contribuidores, além de não perder contribuições preciosas, uma vez que eles
conseguem acompanhar a data das últimas contribuições dos desenvolvedores. Assim,
COOPFINDER pode ser para a tomanda de decisão, como por exemplo, encontrar no-
vos desenvolvedores para colaborar e/ou gerenciar um projeto, montar equipes com base
em seus interesses comuns. Além disso, COOPFINDER também pode ajudar a encontrar
novos desenvolvedores ou colaboradores para contribuirem no desenvolvimento, ou em
outras atividades, tais como testes ou documentação.



Referências

Avelino, G., Passos, L., Hora, A., and Valente, M. T. (2016). A novel approach for
estimating truck factors. In Proc. of the 24th International Conference on Program
Comprehension (ICPC), pages 1–10.

Constantino, K., Belém, F., and Figueiredo, E. (2023a). Dual analysis for helping deve-
lopers to find collaborators based on co-changed files: An empirical study. Journal of
Software: Practice and Experience (JSPE), pages 1–27.

Constantino, K. and Figueiredo, E. (2022). Coopfinder: Finding collaborators based on
co–changed files. In Proc. of the IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), pages 1–3.

Constantino, K. and Figueiredo, E. (2023). Finding collaborations based on co-changed
files. In Anais Estendidos do XVIII Simpósio Brasileiro de Sistemas Colaborativos,
pages 57–66.

Constantino, K., Prates, R., and Figueiredo, E. (2023b). Recommending collaborators
based on co–changed files: A controlled experiment. In Proc. of the 18th Brazilian
Symposium on Collaborative Systems, pages 154–168.

Constantino, K., Prates, R., and Figueiredo, E. (2024). An user evaluation of a col-
laborator recommender based on co-changed files. Journal on Interactive Systems,
15(1):157–169.

Constantino, K., Souza, M., Zhou, S., Figueiredo, E., and Kästner, C. (2021). Perceptions
of open-source software developers on collaborations: An interview and survey study.
Journal of Software: Evolution and Process (JSEP), 33:e2393.

Constantino, K., Zhou, S., Souza, M., Figueiredo, E., and Kästner, C. (2020). Unders-
tanding collaborative software development: An interview study. In Proc. of the 15th
International Conference on Global Software Engineering (ICGSE), page 55–65.

de Neira, A. B., Steinmacher, I., and Wiese, I. S. (2018). Characterizing the hyperspeci-
alists in the context of crowdsourcing software development. Journal of the Brazilian
Computer Society (JBCS), 24(1):1–16.

Ferreira, M., Valente, M. T., and Ferreira, K. (2017). A comparison of three algorithms
for computing truck factors. In Proc. of the 25th International Conference on Program
Comprehension (ICPC), pages 207–217.

Franco, M. F., Rodrigues, B., and Stiller, B. (2019). Mentor: The design and evalua-
tion of a protection services recommender system. In Proc. of the 15th International
Conference on Network and Service Management (CNSM), pages 1–7.

Gousios, G., Pinzger, M., and Deursen, A. v. (2014). An exploratory study of the pull-
based software development model. In Proc. of the 36th International Conference on
Software Engineering (ICSE), pages 345–355.

Gousios, G., Zaidman, A., Storey, M.-A., and Deursen, A. v. (2015). Work practices
and challenges in pull-based development: The integrator’s perspective. In Proc. of
the 37th International Conference on Software Engineering (ICSE), volume 1, pages
358–368.



Kononenko, O., Baysal, O., and Godfrey, M. W. (2016). Code review quality: How de-
velopers see it. In Proc. of the 38th International Conference on Software Engineering
(ICSE), pages 1028–1038.

Minto, S. and Murphy, G. (2007). Recommending emergent teams. In Proc. of the 4th
International Conference on Mining Software Repositories (MSR), pages 5–5.

Oliveira, J., Pinheiro, D., and Figueiredo, E. (2020). Jexpert: A tool for library expert
identification. In Proc. of the 34th Brazilian Symposium on Software Engineering
(SBES), pages 386–392.

Oliveira, J., Viggiato, M., and Figueiredo, E. (2019). How well do you know this library?
mining experts from source code analysis. In Proc. of the XVIII Brazilian Symposium
on Software Quality (SBQS), pages 49–58.

Pham, R., Singer, L., Liskin, O., Figueira Filho, F., and Schneider, K. (2013). Creating
a shared understanding of testing culture on a social coding site. In Proc. of the 35th
International Conference on Software Engineering (ICSE), pages 112–121.

Pinto, G., Steinmacher, I., and Gerosa, M. (2016). More common than you think: An
in-depth study of casual contributors. In Proc. of the 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), volume 1, pages 112–123.

Rahman, M. M., Roy, C. K., Redl, J., and Collins, J. A. (2016). Correct: Code reviewer
recommendation at github for vendasta technologies. In Proc. of the 31st International
Conference on Automated Software Engineering (ASE), page 792–797.

Ricci, F., Rokach, L., and Shapira, B. (2011). Introduction to recommender systems
handbook. In Recommender Systems Handbook, pages 1–35.

Salton, G. (1971). The smart retrieval system: Experiments in automatic information
retrieval.

Salton, G. (1989). Automatic text processing: The transformation, analysis, and retrieval
of. Reading: Addison-Wesley, 169.

Salton, G. and Harman, D. (2003). Information retrieval. In Encyclopedia of Computer
Science.

Steinmacher, I., Pinto, G., Wiese, I. S., and Gerosa, M. A. (2018). Almost there: A
study on quasi-contributors in open-source software projects. In Proc. of the 40th
International Conference on Software Engineering (ICSE), pages 256–266.

Tamburri, D. A., Kruchten, P., Lago, P., and Van Vliet, H. (2015). Social debt in software
engineering: Insights from industry. Journal of Internet Services and Applications
(JISA), 6(1):1–17.

Yu, Y., Wang, H., Filkov, V., Devanbu, P., and Vasilescu, B. (2015). Wait for it: Deter-
minants of pull request evaluation latency on github. In Proc. of the 12th International
Conference on Mining Software Repositories (MSR), pages 367–371.


