
Journal on Interactive Systems, 2021, 6:1, doi: 10.5753/jis.2021.xxx

� This work is licensed under a Creative Commons Attribution 4.0 International License..

User Evaluation of a Collaborator Recommender based on

Co-Changed Files

Kattiana Constantino� [Federal University of Minas Gerais | kattiana@dcc.ufmg.br]

Raquel Prates� [Federal University of Minas Gerais | rprates@dcc.ufmg.br]

Eduardo Figueiredo� [Federal University of Minas Gerais | figueiredo@dcc.ufmg.br]

Abstract

Active collaboration is essential for the success of software projects across the development life-cycle. Un-

fortunately, in social coding platforms, such as GitHub, it is still challenging for developers to identify potential

collaborators with whom they could engage to create new/stronger ties and enhance the quality of contributions.

To this end, we implemented developer recommendation strategies and prototype tool to help project contributors

improve their collaborations. Thus, in this work, we described a controlled experimental study concerned usability

and user satisfaction to investigate the developers’ perceptions of using CoopFinder, a prototype tool to support two

strategies for recommending collaborations. These developer recommendation strategies aim to connect developers

of a specific project based on their similar interests. The study involved 35 participants, 18 of which were GitHub

users, and 17 were non–GitHub users. We asked participants to perform the experiment tasks to find collaborators

with similar interests using a prototype recommendation tool and GitHub. We reported a quantitative and qualitative

evaluation of strategies and tool using the state of the practice as a baseline. As a result, we observed that recommender

based on co–changed files can provide suitable collaborator recommendations to developers of a specific project.

About 66% of the participants confirmed they would use or recommend this tool.

Keywords: Open-Source Software Projects, Collaborative Software Development, Distributed Collaboration, Developer

Recommendation.

1 Introduction

Active collaboration is essential for the success of software

projects across the development life-cycle. Contributors who

appreciate the work or feel responsible for the project are

more likely to persist than those driven by particular interests

(Shah, 2006; Crowston and Fagnot, 2018). Thus, it would

be useful to support contributors to stay in the project and

make quality contributions (Qiu et al., 2019; Crowston and

Fagnot, 2018; Barcomb et al., 2019, 2020). However, social

coding platforms, like GitHub1, can present challenges in

finding potential collaborators with whom they could create

new/stronger ties and enhance the quality of contributions.

One of the challenges associated with identifying collabora-

tors is that reliable information is often not readily available

(Minto and Murphy, 2007; Surian et al., 2011; Canfora et al.,

2012).

Previous works have explored developer recommendations

for collaborative interactions in software engineering devel-

opment. For instance, Minto and Murphy (2007) ranked a list

of the likely emergent team members based on a set of files

of interest. Surian et al. (2011) recommended a list of top

developers that are most compatible based on their program-

ming language skills, past projects, and project categories

they have worked before. Canfora et al. (2012) identify and

recommend mentors for newcomers in software projects by

mining data from mailing lists and versioning systems. Fi-

nally, Thongtanunam et al. (2015) recommended pull-request

reviewers based on past reviews of files with similar names

and paths. Most of these studies mainly focus on specific

software tasks and limit the recommended candidates to the

1https://github.com/

core developers of the projects. Inspired by these previous

work (Canfora et al., 2012; Thongtanunam et al., 2015), we

recommend collaborators based on a set of files that have

been mutually edited to increase engagement in the project

and enhance the opportunities for collaborations, not only

core members, code-reviewers, or mentors but also all ac-

tive collaborators of the project that need some help. In this

work, we have denominated these mutually edited files as

co-changed files (Constantino et al., 2023a).

In previous work, we presented a prototype–tool named

CoopFinder2 (Constantino and Figueiredo, 2022), which

supports two developer recommendation strategies. In another

previous work (Constantino et al., 2023a), we evaluated these

developer recommendation strategies based on co–changed

files from the point of view of who receives the recommen-

dations. We observed that these strategies helped developers

and maintainers find opportunities for collaborations.

To support the strategies, CoopFinder is an interactive

visual tool allowing developers to select collaborators and see

in which part of the project they have similar interests. The

interactive ability of the tool allows developers or maintainers

to follow the activities of the collaborator in order to identify

potentially interesting collaborators. Based on previous works

(Constantino et al., 2020, 2021), we considered that the set of

files of interest represent strong ties in connecting developers

of a project. That is, coding tasks may point to opportunities

for joint contributions to the project.

In this paper, we extend our prior research (Constantino

et al., 2023b), which describes a controlled experimental

study3 to investigate the developers’ perceptions of using

2https://homepages.dcc.ufmg.br/ kattiana/coopfinder/welcome.html
3As required, the study was approved by the University’s (UFMG)

https://orcid.org/0000-0003-4511-7504
mailto:kattiana@dcc.ufmg.br
https://orcid.org/0000-0002-7128-4974
mailto:rprates@dcc.ufmg.br
https://orcid.org/0000-0002-6004-2718
mailto:figueiredo@dcc.ufmg.br

User Evaluation Constantino et al. 2023

CoopFinder prototype. The study involved 35 participants,

of which 18 were GitHub users and 17 were non-users. We

asked participants to perform the experiment tasks to find

collaborators with similar interests using a prototype recom-

mendation tool and GitHub. Each participant completed the

following tasks: fill out a background questionnaire before the

experiment and execute a set of tasks. To reduce the learning

effect on the assessment results, we used the Latin square

(Fisher, 1992) to distribute the tasks and tools between two

groups of (random) participants. Afterward, participants an-

swered a post–assignment questionnaire about their opinions

on the developer recommendations.

As results, participants pointed out that CoopFinder is

easy to use, intuitive, exciting, and supports project main-

tainers. Besides, we observed that participants were able to

perform tasks more easily using CoopFinder than GitHub.

About 66% of the participants confirmed they would use

or recommend this tool. Our primary contributions can be

succinctly summarized as follows:

• We propose developer recommendation strategies, sup-

ported by a visual and interactive tool to connect collabo-

rators based on a set of files of their interest. Furthermore,

the tool provides metadata and links different attributes

that could not be analyzed using the GitHub interface;

• We describe a quantitative and qualitative evaluation of

strategies and tool using the state of the practice as a

baseline;

• We designed and conducted a controlled experiment to

evaluate the developer recommendation strategies and

tool;

• We evaluated the usability of CoopFinder with 35

developers. About 51% of them are collaborators and

maintainers of real-world open-source projects hosted

on GitHub;

• We obtained insights from the users to improve

the developer recommendation algorithms and the

supporting tool.

Our comprehensive replication package is readily acces-

sible online to facilitate future replications and extensions4.

The structure of this paper unfolds as follows. Section 2 in-

troduces the problem we address. Section 3 offers insight

into the developer recommendation strategies, encompass-

ing their design, implementation, and practical usage within

the Coopfinder tool. Section 4 describes the study design.

Furthermore, we analyze and report the results of this study

(Section 5). Section 6 explores potential threats to the validity

of our study. Finally, we end this paper with some concluding

remarks and discuss directions for further work (Section 7).

2 Problem Statement

Previous works show that developers usually ask for help

from the core team members, who should be expected to

share their motivation, knowledge, and experience (Minto and

Committee for Ethics in Research - Protocol number: 55476922.0.0000.5149.
4https://github.com/kattiana/coopfinder

Murphy, 2007; Kononenko et al., 2016). However, this may

not always work as the core team members could be too busy

to respond (Yu et al., 2015; Gousios et al., 2015; Steinmacher

et al., 2018). Other experienced developers outside of the

core team could also be helpful, and might be more available.

That is, all collaboration is essential for the project to succeed

(Gamalielsson and Lundell, 2014). Hence, all contributions

should be appreciated and encouraged (Pham et al., 2013;

Gousios et al., 2014; Pinto et al., 2016).

Previous research also mentions that not having enough

people to perform core team roles, such as maintainers, sup-

porters, and reviewers, impacts the sustainability of the project

(Jiang et al., 2015; Costa et al., 2021). Developer turnover can

also have a negative impact, as a small group of developers

may become overloaded with information and knowledge

(Avelino et al., 2016; Ferreira et al., 2017), while others may

have limited access to knowledge-sharing opportunities (e.g.,

collaborations, discussions) (Tamburri et al., 2015). These

situations can lead to frustration and encourage developers to

leave the project. These issues all relate to how developers

interact with each other and how these relationships affect

the project. Therefore, it is crucial to optimize collaboration

among project developers and maintain a balanced team.

3 Developer Recommendation Strate-

gies

Developer Recommendation Strategies are supported by

CoopFinder, a prototype tool that enhances opportunities

for collaboration in a project based on co-changed files. These

co-changed files refer to files that two or more developers

have modified. CoopFinder is an interactive and visually-

rich web application that helps connecting developers of these

files.

3.1 Developer Recommendation Design

CoopFinder implements two developer recommendation

strategies, namely Strategies 1 and 2, which are based on

co–changed files. For Strategy 1, the number of commits

was mined to determine the frequency of file modifications

by a developer. For Stra tegy 2, the number of changed lines

of code (LoC) was extracted. This metric computes the sum

of code lines added and removed by a developer in a specific

file (Constantino et al., 2023a). Figure 1 presents an overview

of the steps required to recommend a developer to another

developer in the software project, as follows.

Step 1 – Feature Extraction: The modification history

made by all developers in a project was extracted concerning

the inputs, as illustrated in Figure 1. The GitHub platform,

a social network hosting projects and supporting the fork &

pull model, was utilized for this purpose. GitHub developers

create copies of the original repository and make changes in

their respective copies. Once these changes are finalized, they

have the option to submit them back into the original reposi-

tory via a pull request. Thus, we want to assess the similarity

of interest among developers in a project. For instance, when

both Developer 1 and Developer 2 modify FileA, we infer

that they share an common interest in FileA. Conversely, if

User Evaluation Constantino et al. 2023

Extracting name of changed files

based on the number of commits

Extracting name of changed files

based on the number of lines of code

modified (additions and deletions)

Source Feature Extraction Changed File Scoring

TF-IDF Algorithm Cosine Similarity Algorithm

Developer
Recommendations

3
1

2

3
1

2

Strategy 1

Strategy 2

Figure 1. Two developer recommendation strategies (Constantino et al., 2023a).

only Developer 3 modifies FileF , it implies that Developer

3 is exclusively interested in FileF . There may also be in-

stances where all developers express interest in FileC if each

contributes to its modification. We employ the following met-

rics to capture these changes: Number of commits, utilized in

Stra tegy 1, quantifies how frequently a developer modifies

a file. On the other hand, Number of changed lines of code

(LoC), employed in Strategy 2, computes the total count

of added and removed code lines in a specific file where

the developer is involved. Both aforementioned metrics are

calculated considering the whole life time of the project.

Step 2 – Changed File Scoring:We performed file min-

ing for each developer of the project by extracting the set

of co–changed files. This set of files was then ranked using

the Term Frequency – Inverse Document Frequency (TF–

IDF) algorithm (Salton, 1989). The resulting rank of relevant

files for each developer is presented in Figure 1. For instance,

considering Stra tegy 1 for Developer 2, FileB is more rele-

vant than FileA. However, in Strategy 2, the rank of files

changed, then FileA became more relevant then FileB .

Step 3 – Developer Recommender Model: The rank of

relevant files for each developer of the project, calculated

using the vector space model, was utilized to calculate their

similarity via the widely-used cosine metric (Salton, 1971;

Salton and Harman, 2003). This metric has been extensively

employed (Rahman et al., 2016; Franco et al., 2019) due

to its ability to quantify the similarity of two objects (Ricci

et al., 2011). In summary, these developer recommendation

strategies primarily center around contributions based on co-

changed files. St ra tegy 1 relies on the number of commits in

a code file, but this metric poses a potential drawback. It tends

to favor a developer who frequently makes small commits,

suggesting “higher engagement” with the file, over another

developer who makes infrequent but substantial commits. To

mitigate this issue, Strategy 2 adopts the “LOC metric”,

accounting for added or deleted code lines in a project file.

This metric allows us to capture the volume of changes, pro-

viding insights into the level of engagement and interest in

the file. For both strategies, we do not address the quality

of contributions, i.e., we do not distinguish whether some

contributions are more or less relevant for the project.

3.2 Implementation Technologies

Our web tool is based on client-server architecture and uti-

lizes visualization techniques. The server-side is implemented

in Python 35, with the help of the scikit-learn libraries6, a

free machine learning library for Python. For the views in

CoopFinder, we employed the HighCharts7 analytical data

visualization components, a JavaScript library that enables

the manipulation of documents based on data. Finally, we

utilized the Bootstrap Framework8 components, which in-

clude various stylesheets and jQuery plugins9, to create an

interactive user interface. Our choice of these technologies

was driven by the goal of providing a dynamic exploration

and visualization experience.

3.3 Interface and Interaction

The screenshots of CoopFinder related to the list of contrib-

utors of a selected project are depicted in Figure 2. This list

includes all contributors who have modified any files in their

copies from a selected project from GitHub, as described in

Section 3.1. In Figure 2, Frame (A) displays project informa-

tion, such as the repository name, number of stars, number

of forks, and number of open issues, to which the collabora-

tors belong. Frame (B) presents a table of all collaborators of

the selected project. For each collaborator, the table provides

their developer information, including their avatar, name, fork,

number of followers, number of following, number of com-

mits in upstream, number of non-merged commits, and the

date of their last commit. Frame (C) displays code activity for

upstream and non-merged commits, along with the last com-

mit date. This helps users assess the status of the collaborators

in the project, including their activity level based on merged

commits and last commit date. Recent non-merged commits

may signal a need for assistance. Furthermore, maintainers

can review the interests of the collaborators in the project

or build teams around of their co-changed files. Finally, the

button “Run” runs the algorithms of the recommendations

and the results are presented as following.

Figure 3 depicts a screenshot of CoopFinder with a list

of recommended collaborators for the target developer, which

may vary depending on the selected strategy and the rank of

relevant files for each project developer, as described in Sec-

tion 3.1. Frame (D) displays project information, such as the

repository name, number of stars, number of forks, and num-

ber of open issues, to which the recommended collaborators

5https://www.python.org/
6https://scikit-learn.org/stable/index.html
7https://www.highcharts.com/
8https://getbootstrap.com/
9https://jquery.com

User Evaluation Constantino et al. 2023

A

B

C
Developer 1 Fork 1

Developer 3 Fork 3

Developer 2 Fork 2

Developer 4 Fork 4

Developer 6 Fork 6

Developer 5 Fork 5

Developer 7 Fork 7

Developer 9 Fork 9

Developer 8 Fork 8

Developer 10 Fork 10

Figure 2. Overview of the contributors information from a specific GitHub project (Constantino and Figueiredo, 2022).

D

H

I

fork 1

fork 2

fork 3

fork 4

fork 5

developer 1

developer 2

developer 3

developer 4

developer 5

developer target

developer target developer 4

developer 4

fork 4

developer target

fork target

E

F

G

Figure 3. Overview of developer recommendations and their aggregated information (Constantino and Figueiredo, 2022).

belong. Frame (E) presents information about the target devel-

oper, such as their name, avatar, last commit date, number of

total commits, followers, and followings. Finally, Frame (F)

shows a list of recommended developers with similar interests

based on co-changed files.

In Frame (F), users can select one of the recommended

collaborators to compare with the target developer shown in

Frame (E). Once selected, Frame (G) displays the two chosen

collaborators along with their names and forks, linked with

their GitHub profile. Frame (H) enables users to analyze the

common files of the two developers. For instance, “t/discov-

ery/nacos.t” and “apisix/discovery/nacos.lua” are common

files that both developers. They are interested in and are fa-

miliar with these files (Figure 3). Finally, in Frame (I), the

recommended developer’s expertise (programming language)

related to the focused project is presented. This expertise is

calculated as a percentage of the total number of files changed

in each programming language. Note that, this feature is not

the primary focus of our current work. However, we leave this

space open for potential avenues for future research. Other

works, such as (Oliveira et al., 2019, 2020; de Neira et al.,

2018), explored the expertise of the developers.

4 Study Design

This section presents the design of an experiment study to eval-

uate the developer recommendations based on co–changed

files supported by a prototype-tool, namely CoopFinder.

Due to the Covid-19 pandemic, we performed the experiment

remotely. However, all instructions and tools necessary were

available to participants. Besides, the first author was avail-

able to clarify any doubts. To collect the data, we adopted

questionnaires specially designed for this evaluation by us-

ing the Google Forms10 service. Next, we describe our goal,

research questions, formulated hypotheses, and the research

method.

10https://docs.google.com/forms, accessed in April 2022.

User Evaluation Constantino et al. 2023

4.1 Study Goal

We set the goal of our study using the Goal/Question/Metric

(GQM) template (Basili and Weiss, 1984), as outlined below.

Analyze a tool-supported recommendation strategy

for the purpose of evaluation

with respect to ease of use

from the point of view of developers

in the context of recommendations based on co–changed files in

the open-source environment.

4.2 Research Questions

To achieve our goal, we based our evaluation method on the

following research questions.

RQ1 - How easy is it to find collaborators using

CoopFinder? We compared CoopFinder with GitHub

(state-of-the-practice) related to ease of use to find collabora-

tors. Davis (1989) defined ease of use as the degree to which

a user believes that using a specific system would be effort

free.

RQ2 – Does the expertise with GitHub impact on the effec-

tiveness of finding collaborators?With this RQ, we relate the

background of participants with their experience with GitHub

when using the analyzed tools.

RQ3 – How fast is it to find a collaborator using

CoopFinder? In this RQ, we also compared CoopFinder

with GitHub (state-of-the-practice) in regard to the time re-

quired to perform all tasks for finding collaborators.

RQ4 – How do participants perceive CoopFinder? In

this RQ, we report the perceptions of the participants about

the CoopFinder tool, as commented by them in the post–

assignment questionnaire of the experiment.

RQ5 – How could the developer recommendations be im-

proved? In this last RQ, we report the suggestions of the

participants related to developer recommendations features

to improve the developer recommendations.

4.3 Hypotheses Formulation

We defined hypotheses for RQ1: in which tool (CoopFinder
or GitHub) would it be easier for finding collaborators with

similar interests. To answer RQ1 we evaluated the ease of use
of the tools in terms of the scale: 1 (very easy), 2 (easy), 3

(hard), and 4 (very hard). Thus, RQ1 was turned into the null
and alternative hypotheses as follows.

H0: There is no significant difference related to ease of use between
CoopFinder or GitHub.

Ha: There is significant difference related to ease of use between

CoopFinder or GitHub.

We defined hypotheses for RQ2: which group (GitHub
user or non-user) would it impact the use of the

CoopFinder or GitHub. To answer RQ2 we evaluated the
answers (correct, incorrect and the blank) that participants

should provide for each task proposed. Thus, the null and

alternative hypotheses are:

H0: There is no significant difference in the hit rate between the
GitHub users and non-users.

Ha: There is significant difference in the hit rate between the

GitHub users and non-users.

Finally, we designed hypotheses for RQ3: which tool

(CoopFinder or GitHub) requires more time for finding

collaborators with similar interests in co–changed files among

developers. As mentioned, to answer RQ2, we evaluated the
duration of the tasks in terms of the time required to perform

all tasks. Thus, the null and alternative hypotheses are:

H0: There is no significant difference related to time (in minutes)
to perform all tasks using CoopFinder or GitHub.

H1: There is significant difference related to time (in minutes) to
perform all tasks using CoopFinder or GitHub.

4.4 Research Method

To answer the research questions, we planned and performed

an experiment study, as shown in Figure 4.

Participant selection.We selected the participants by con-

venience and using the snowball recruitment technique (i.e.,

one participant indicates another one, and so on) (Flick, 2018).

To be eligible to participate in this study, they must be collab-

orators of software development projects (developers or main-

tainers), especially collaborators who work on open-source

projects in GitHub. Section 5.1 presents the overview of the

participants selected. We received responses from 43 partici-

pants. Eight participants did not complete all questionnaires;

thus, they were excluded.

Experiment design. First, we asked participants to com-

plete a demographic and background questionnaire (10 min-

utes). After, we provided a training and explanation session

about the experiment related to CoopFinder and GitHub

(10 minutes) (Figure 4). After the training session, we asked

participants to perform a set of seven tasks for each tool -

CoopFinder and GitHub (1 hour). We instructed the par-

ticipants to perform the tasks using both tools. To reduce

the learning effect on the assessment results, we used the

Latin square (Fisher, 1992) to distribute the tasks and tools

between two groups of participants, as presented in Figure

4. Each treatment appears only once in each row (group of

participants) and only once in each column (tools), allowing

a broader evaluation concerning the tool and the group of

participants. Finally, we presented a post–questionnaire with

open-ended questions, allowing participants to give feedback

about the CoopFinder tool.

Experiment tasks.We defined and adapted the tasks for

each tool to have the same goal (Table 1) and difficulty level.

Moreover, we presented a brief scenario for each task to direct

the activity of the participant to achieve the task goal. For each

task, participants should provide an answer for the activity

proposed and indicate their perception on how easy it was to

perform the task. All scenarios and tasks are available online

for future replications/extensions11.

Post–assignment questionnaire.After the experiment, we

sent a short questionnaire to the participants regarding their

11https://github.com/kattiana/coopfinder

User Evaluation Constantino et al. 2023

Experiment (~ 1:10 hour)

Latin square design -

Experiment tasks (1 hour)

Data collection

Quantitative and qualitative analysis

Group 2

Session training First tool Second tool

Group 1

(10 min)

Pré-questionnaire (10 min)

Answering (10 min)

Demographic

information

Post-questionnaire (10 min)

Answering (10 min)

CoopFinder

feedback

Participant selection

Convenience and
snowball recruitment

technique

Figure 4. Experiment Design.

Table 1. List of tasks to be performed by participants.

Task ID Goal

Task 1 Exploring project information

Task 2 Exploring collaborators of a specific project

Task 3 Exploring (non-merged and merged) commits of the collaborators

Task 4 Exploring similar interests among collaborators

Task 5 Exploring contributions to identify relevant files for the collaborators

Task 6 Exploring developer recommendations

Task 7 Exploring expertises of a specific collaborator

perceptions about CoopFinder. In this questionnaire, we

asked the following questions; and we received responses

from all 35 participants.

• What did you think about the CoopFinder tool?

• What are the strengths of the CoopFinder tool?

• What are the points to improve this tool?

• What other technical or social information do you think

could be explored to improve developer recommenda-

tions?

• Would you use and/or recommend this tool? Why?

Data collection.We collected data from the demographic

and background questionnaire, the questionnaires of experi-

mental tasks for both tools (CoopFinder and GitHub) and

the post–experiment questionnaire related to the feedback

of the participants for the CoopFinder tool (Figure 4). All

data were analyzed, interpreted and reported in the results.

Besides, all questionnaires, experiment tasks are available

online for future replications/extensions.

Quantitative and qualitative analysis. First, we collect

quantitative and qualitative data from the online survey and

mined data about the participants in social platforms, such as

GitHub and LinkedIn. Section 5 presents the descriptive anal-

ysis of these data and Wilcoxon (W) test (Wilcoxon, 1992).

We applied the Wilcoxon test for testing the statistical signif-

icance. This test is non-parametric; it makes no assumptions

about the data distribution. Thus, we can use this test when

comparing two groups by continuous or ordinal non-normally

distributed dependent variables (Wohlin et al., 2012).

We applied the Chi-Squared test to analyze categorical

grouped responses to Likert scale questions and to test the

hypotheses of no association between the two groups (i.e.,

to check independence between two variables). Furthermore,

to apply the Chi-Squared test, we should fulfill three prereq-

uisites: (1) random data from a population; (2) the expected

value of any cell should not be less than five; (3) if the value

in any cell is less than five, it should not occupy more than

20% of cells, i.e., in two by two table, no cell should contain

an expected value less than five. Violation of this assumption

needs to be corrected by Yate’s correction or Fisher’s Exact

test (Miller and Siegmund, 1982). All three assumptions were

met in our case. We used the R language, RStudio12, and

some statistical R packages, such as “ggplot2”, “scales”, and

“rstatix”.

Ethical considerations. This work involves experiments

with human subjects. All participants gave the consent for

their answers to be used in this research. Regarding partic-

ipant data, all sensitive information (i.e., names or GitHub

profile) has been previously anonymized to ensure the pri-

vacy of participants. Last, this research was approved by the

Committee for Ethics in Research of our institution before

performing this work.

5 Study Results

This section presents the results regarding each research ques-

tion of this study. These results provide insights into the par-

ticipants’ perspective.

5.1 Participant Overview

A user study was conducted with 35 participants to evaluate

the usefulness and satisfaction of users with the CoopFinder

tool. Participants involved in this study are 35 developers

12https://www.rstudio.com/

User Evaluation Constantino et al. 2023

enrolled in courses related to Software Engineering. All par-

ticipants are graduated (M.Sc. and Ph.D students) or close

to graduate. Table 2 shows some profiling information of

these participants related to gender (26 males and 9 females

participants), the time of experience in software development

contributions. Finally, if they were or not a GitHub contribu-

tor.

Table 2. Profiling information of the participants.

%

Gender Female 9 26

Male 26 74

Software None 8 23

Development Less than 1 year 9 25

Contributing 1 year to 3 years 11 31

More than 3 years 7 20

GitHub Yes 18 51

Contributor No 17 49

About 51% of the participants who are not GitHub contrib-

utors declared that they already have tried to make contribu-

tions to a GitHub project. We also asked them which kind

of actions they have taken on GitHub. Participants P02, P20,

and P035 noted that they only opened issues for a project. On

the other hand, participant P03 faced some difficulties and

declared “I found exciting projects, but due to entry barriers

(understanding of the code, time of dedication) I ended up

postponing my work.” This kind of declaration is in accor-

dance with the literature on barriers faced by developers when

trying to collaborate in a project (Steinmacher et al., 2015;

Gousios et al., 2016).

Furthermore, participant P21 also declared “I had difficulty

in understanding the code or the lack of help from the leading

developers of the project so that I could make the contribu-

tions.” This finding is consistent with literature (Bird, 2011;

Zhou and Mockus, 2011; Gousios et al., 2016) related to the

barriers of collaboration, such as lack of knowledge about

the code–base and lack of interaction with project members.

Besides, this result also reinforces the importance of provid-

ing support for developers to find appropriate developers to

help them and strengthen the ties among them for improving

collaborations in the project.

5.2 How easy is it to find collaborators using

CoopFinder? - RQ1

In this section, we present the results related to the ease of use

of each tool (CoopFinder and GitHub), i.e., the degree of

effort demanded by participants. We applied the same set of

tasks with little adaptations for each tool. The tasks are related

to exploring information on the project, collaborators, and

their contributions and interests. Each task has a specific goal,

as detailed in the Table 1. However, the general goal of this

set of tasks is to make it easier to find a suitable collaborator

with similar interests in co–changed files. Table 3 shows

the statistical descriptive (Median (Med), Minimum (Min),

Maximum (Max), Distribution (D)), and Wilcoxon (W) test

result for each task performed by participants using both tools

(CoopFinder and GitHub). After participants performed

each task, they could express their experience related to ease

of use with a scale ranging from 1 (very easy), 2 (easy), 3

(hard), and 4 (very hard).

We applied the Wilcoxon test to compare how easy the

tasks were for participants when using CoopFinder and

GitHub. According to the Wilcoxon test, the p-value for Task

1 is 0.03, and for the others, the p-value is less than 0.001,

which allows us to conclude that the ease of use is statistically

different for CoopFinder and GitHub (Table 3). Indeed,

the CoopFinder prototype is a visual and interactive tool

for finding suitable collaborators to improve collaborations

into projects. Moreover, the tool provides metadata and links

to different attributes that could not be analyzed efficiently

using the GitHub interface. For example, this information

is related to the source code activities of the collaborators

of a specific project. Furthermore, this information can help

finding collaborators based on similar interests in files that

they have modified.

RQ1 Summary:We observed that participants were able to per-

form tasksmore easily using CoopFinder than GitHub.Wilcoxon

test showed that there is statistical difference related to ease of use

between CoopFinder or GitHub.

5.3 Does the expertise with GitHub impact on

the effectiveness of finding collaborators? -

RQ2

In this section, we analyze whether the background related

to GitHub expertise of participants can impact the use of the

analyzed tools. To this end, we separated the participants

into two independent groups (GitHub User group and GitHub

non-user group). The former group is for participants who are

developers or maintainers of, at least, one open-source project

hosted on GitHub. The latter group is for participants who do

not have experience with GitHub. Table 4a and 4b present

the results about the correct (C), incorrect (I) and the blank

(B) answers that participants should provide for the activity

proposed. For each independent group, the first and second

columns show the number of correct (C) and incorrect (I)

answers for each task, respectively. Finally, the “blank” (B)

column indicates when participants could not answer correctly

and left them blank. For this analysis, we applied the Fisher’s

exact test to compare the hit rate between groups that are

GitHub users and non-GitHub users (independent variable)

and the answers (“correct”, “incorrect”, and “blank”), both

are qualitative nominal variables.

Table 4a shows the predominance of correct answers when

participants performed the tasks using the CoopFinder tool.

On the other hand, Table 4b shows the answers were more dis-

tributed when participants used GitHub. The “blank” column

draws attention to the fact that, except for Task 1, in all other

questions, at least half of the participants left the answer blank

when they performed the tasks using GitHub. Comments such

as “I didn’t find this information” or “I don’t know” were

common during the execution of the tasks. Participant P22

(GitHub user) explored GitHub to try to answer the tasks

correctly. However, P22 stated “I found it very difficult to

find the necessary information on GitHub to do the analyses”.

User Evaluation Constantino et al. 2023

Table 3. Statistic Table.

CoopFinder GitHub W

Tasks Med Min Max D* Med Min Max D* p**

1 2 3 4 1 2 3 4

Task 1 1 1 1 1 2 2 0.037

Task 2 1 1 2 4 1 4 <0.001

Task 3 1 1 2 4 1 4 <0.001

Task 4 1 1 3 4 1 4 <0.001

Task 5 1 1 4 4 1 4 <0.001

Task 6 1 1 3 4 1 4 <0.001

Task 7 1 1 2 1 1 4 <0.001

The acronyms used in the columns stand for: Median (Med), Minimum (Min), Maximum (Max), Distribution (D), and Wilcoxon test (W). * Note: The scale ranges from 1 (very easy)

to 4 (very hard) on experience of participants for each task. ** p-value < 0.05.

Table 4. Results of tasks performed by GitHub user and non-user.

User (#) Non-User (#)

Tasks C I B C I B p*

Task 1 16 2 0 15 2 0 1.00

Task 2 18 0 0 17 0 0 **

Task 3 16 2 0 17 0 0 0.48

Task 4 15 3 0 16 1 0 0.60

Task 5 17 1 0 12 3 2 0.15

Task 6 11 7 0 12 5 0 0.72

Task 7 18 0 0 17 0 0 **

(a) CoopFinder

User (#) Non-User (#)

Tasks C I B C I B p*

Task 1 18 0 0 17 0 0 **

Task 2 7 0 11 9 4 4 0.02

Task 3 2 2 14 2 3 12 0.86

Task 4 2 5 11 2 5 10 1.00

Task 5 3 2 13 4 3 10 0.68

Task 6 2 0 16 3 0 14 0.65

Task 7 15 1 2 14 0 3 1.00

(b) GitHub

The acronyms used in the columns stand for: correct answers (C), incorrect answers

(I), and in blank (B). * Fisher’s exact test (p-value < 0.05).** Test was not applied

because the task contains fewer than 2 levels.

It reinforces that CoopFinder provides metadata and links

to different attributes that could not be explored efficiently

using the GitHub interface. Fisher’s exact test showed there

was no significant difference in the hit rate between the users

and non-users groups for almost all tasks (p-value > 0.05).

When participants used GitHub to perform the task, explor-

ing collaborators of a specific project (Table 3), the Fisher’s

exact test showed a significant statistical difference for the

two samples (p-value = 0.02).

RQ2 Summary: We observed the predominance of correct an-

swers when participants used CoopFinder. On the other hand,

we also observed the predominance of blank answers when using

GitHub indicating that participants either did not know or did not

find the correct answers. In general, Fisher’s exact test showed no

significant difference in the hit rate between the users and non-users

groups for all tasks.

5.4 How fast is it to find a collaborator using

CoopFinder? - RQ3

In this section, we analyzed the amount of time it took partici-

pants to perform tasks using CoopFinder and GitHub. This

amount of time could be taken as an indicator of each tool’s

ease of use. Figure 5 shows the amount of time spent per-

forming the set of tasks using CoopFinder and GitHub. The

boxplot represents the median as the horizontal line within

the box. Besides, the 25th and 75th percentiles are the lower

and upper sides of the distribution box, respectively. Visu-

ally, we can notice that performing tasks using GitHub took

more time than when using CoopFinder. Table 5 presents

the descriptive statistic for both tools. For CoopFinder, the

median of time spent performing all tasks was 11.2 minutes,

and the 25th and 75th percentiles were 7.58 and 13.1 minutes,

respectively. On the other hand, the median of minutes spent

on GitHub was 25.9. The percentiles in minutes were 19.7

and 38.8 for the 25th, and 75th percentiles, respectively.

We use the Shapiro-Wilk test to verify if the data followed a

normal distribuition. Shapiro-Wilk result is 0.659 and p–value

< 0.001. This p–value suggests a violation of the assumption

of normality. Afterward, the non–parametric Wilcoxon test

showed that there is a difference related to time (in minutes)

to perform all tasks using CoopFinder or GitHub (W=9 and p–

value < 0.001). It shows that the time required for performing

all tasks using CoopFinder and GitHub was significantly

different. Combined with Figure 5, we observed that partici-

pants spent less time using CoopFinder, than using GitHub

to perform the tasks.

User Evaluation Constantino et al. 2023

CoopFinder GitHub

10

20

30

40

50

60

M
in

ut
es

Figure 5. Distribution of time (in minutes) of the tasks performed by partici-

pants when they used CoopFinder and GitHub.

Table 5. Descriptive statistic. Minutes spent performing the tasks

using both tools.

Mean Med SD Min Max

CoopFinder 11.4 11.2 5.4 3.3 26.7

GitHub 36.1 25.9 33.6 5 159

The acronyms used in the columns stand for: Median (Med), Minimum (Min), Maxi-

mum (Max).

RQ3 Summary: We observed that participants spent less time

using CoopFinder than GitHub to perform the tasks. This result

could also indicate that CoopFinder is easier to use.

5.5 How do participants perceive

CoopFinder? - RQ4

In this section, we report the results of the Post–assignment

questionnaire of the experiment. We received responses

from 35 participants. For the data analysis, we employed an

approach inspired by the open and axial coding phases of

ground theory (Corbin and Strauss, 2014). The open coding

examines the raw textual data line by line to identify discrete

events, incidents, ideas, actions, perceptions, and interactions

of relevance that are coded as concepts (Corbin and Strauss,

2014). To do so, one researcher analyzed the responses

individually and marked relevant segments with “codes” (i.e.,

tagging with keywords) and organized them into concepts

grouped into more abstract categories. Afterward, a second

researcher reviewed and verified the categories created (the

conflicts in labelling were resolved by researchers).

Perceptions of the participants. In general, the par-

ticipants commented positive impressions related to

CoopFinder. That is, about 49% of the participants

pointed out that CoopFinder is exciting and supports

project maintainers. For instance, participant P14 remarked

“CoopFinder shows exciting information about developers

and projects they are involved.” Furthermore, for other

37% of participants, the tool is easy to use (intuitive or

simple). For instance, participant P03 stated, “Much more

practical than GitHub. I could not find any of the requested

information in git. The tool clearly shows what I need to

do and is much more intuitive”. Besides, other participants

(34%) considered this tool helpful in finding new developers

to collaborate with and manage a possible project. For

instance, participant P10 noted “It is useful both for finding

new people to collaborate with and managing a potential

project.” Finally, three participants pointed out that the tool

needs some improvements.

Strengths. About 43% of participants indicated the easy

and intuitive interface as strengths of the tool. For exam-

ple, P01 pointed out that “the information about develop-

ers and projects would not be easy to retrieve using more

popular tools.” Other 40% of participants mentioned that

CoopFinder readily provides aggregated and organized

information on GitHub projects and their developers, rep-

resenting an improvement related to finding information or

collaborators on CoopFinder. For instance, P02 noted, “We

can quickly locate information about contributors. Besides,

we carried out the tasks quickly. I also consider the column

with the contributor’s fork name very useful. Unfortunately,

this information is unclear on the GitHub interface.” More-

over, about 31% of participants voted as a strength the purpose

of connecting developers to improve collaborations to project.

Furthermore, they mentioned the collaborator rankings, the

recommendation based on similar interests, and the general

management of collaborators. For instance, P17 commented,

“the strength point of this tool is the comparison of the skills

and parts of the project that collaborators have the most in

common. Another one is collaborators management.” Finally,

11% of participants mentioned the use of data visualization

techniques, participant P09 said “CoopFinder is a visual-

ization tool for collaboration with a clean and well-organized

interface and no visual clutter.”

Weaknesses.We received 32 responses pointing out limita-

tions in CoopFinder. For example, 60% of the participants

gave some suggestions to improve the interface. For instance,

participants suggested improvements to the design of the but-

tons to click. Besides, they asked for an interface in “dark

mode”. About 20% of participants indicated some new func-

tionalities to the tool, such as opening the repository link or

direct the user to GitHub, adding textual search, adding some

similarity metrics between developer profiles. Besides, the

participants also suggested adding new features to improve

the way to group collaborators and adding the possibility to

analyze other projects.

Recommending the tool. We asked if participants

would use or recommend CoopFinder to others. About

66% of the participants answered that they would use or

recommend this tool. They explained that CoopFinder

may help to better understand the progress of the project

concerning the collaborators and who can help whom. For

instance, P01 commented, “Yes. CoopFinder helps a

lot in managing collaborators on a project. Besides, you

can allocate people with the same interests/skills to work

together and other features that GitHub does not have.” On

the other hand, 14% of the participants answered negatively

and justified that the tool was inappropriate for their work

context. For example, participant P28 remarked, “I would

not use it because I do not have or maintain a project with

many users where it is needed.” Other participants (20%)

conditioned the use or recommendation of the tool. For

example, participant P01 mentioned “I do not see much use

in my daily life, as I work with smaller projects. However,

putting myself in the position of the maintainer of large

User Evaluation Constantino et al. 2023

projects, I believe the tool should be handy. If I knew a

developer with the mentioned profile, I would recommend it.”

RQ4 Summary: Participants mentioned that CoopFinder is ex-

citing and supports project maintainers. As for the strengths of

the tool, they pointed out its easy and intuitive interface. Besides,

about 66% of the participants answered that they would use or rec-

ommend this tool. However, other participants (20%) conditioned

the use or recommendation of the tool.

5.6 How could the developer recommenda-

tions be improved? - RQ5

In this research question, we asked for participants which so-

cial or technical features we could explore to improve the de-

veloper recommendation. Table 6 summarizes the responses

of participants. “Programming language” is the most com-

mon suggestion to improve the developer recommendation

algorithms (97%); followed by “communication in the project

forums” and “professional experience level”, with 66% and

63% (Table 6).

Furthermore, participants also mentioned “language”

and “source code (libraries, API, feature)”. Several works

(Oliveira et al., 2019, 2020) identified developers with ex-

pertise in specific libraries from GitHub. Moreover, about

31% of participants indicated the followers and following

(Table 6). Previous works (Wu et al., 2014; Blincoe et al.,

2016) used it as an awareness mechanism to discover new

projects and trends. Certainly, these features can be interesting

in improving the developer recommendations.

“Gender” is the least common suggestion, with just 5%.

It was mentioned mainly for non–GitHub users which may

reflect the barriers faced by newcomers collaborators. For

instance, participant P02 noted “Considering gender issues

can be interesting. For example, women will be able to look

for other women to collaborate with them. As a result, they

feel more comfortable with people of the same gender. That is,

they would be in a safe environment.” This result coincides

with literature, for instance, Vasilescu et al. (2015a,b) argue

that there is discrimination in online software engineering

communities, and women are known to face more signifi-

cant barriers than men. As gender diversity increases, team

productivity increases.

Finally, participants cited freely other features, such as par-

ticipation in issues, previous communication, and openness to

answer issues/doubts. Besides, they suggested the developers

who participated in new projects and complementary tech-

nologies. Finally, they suggested exploring personal profiles,

soft skills, and collaboration on similar projects, checking

programming language skills based on personal repositories.

RQ5 Summary: Participants suggested mainly features to improve

the developer recommendation system, such as programming lan-

guage, communications, and professional experience level. They

also suggested gender issues, soft skills, and collaboration in simi-

lar projects.

6 Threats to Validity

Even with careful planning, this research can be affected

by different factors which might threaten our findings. We

discuss these factors and decisions to mitigate their impact

on our study divided into categories of threats to validity

proposed by Wohlin et al. (2021).

Construct Validity. This validity is related to whether mea-

surements in the study reflect real-world situations (Wohlin

et al., 2012). This kind of threat can occur in formulating

the questionnaire in our experiment (quantitative and qual-

itative analysis). We designed the questionnaire with open

questions as a qualitative study to list users’ satisfaction pro-

vided by the CoopFinder tool. To minimize this threat, we

cross-discuss all the experimental procedures. (Basili et al.,

1999) and (Kitchenham et al., 2002) argue that qualitative

studies play an essential role in experimentation in software

engineering.

Internal Val idi ty . The validity is related to uncontrolled

aspects that may affect the strategy results (Wohlin et al.,

2012). Since we employed a snowballing approach to sam-

pling our participants, we acknowledge that sampling bias

affects the selection of the participants, namely self-selection

and social desirability biases. However, we counteracted this

effect by inviting people with different profiles, from various

projects, and with diverse backgrounds, seeking out differ-

ent perspectives. Another threat is the use of statistical tools.

We paid particular attention to the suitable use of statistical

tests (i.e., Wilcoxon test) when reporting our results. This

decreases the possibility that our findings are due to random

events.

External Val idi ty . The external validity concerns the

ability to generalize the results to other environments (Wohlin

et al., 2012). There are three major threats to the external va-

lidity of our study, such as baseline tool, the selected project

and participants. First, we chose GitHub as baseline of the

experiment, and we cannot guarantee that our observations

can be generalized to other tools. Second, we analyzed public

and different open-source projects hosted on GitHub, differ-

ent community sizes, and programming languages, among

many available ones. Moreover, we cannot guarantee that

our observations can be generalized to other projects. Finally,

participants may not reflect the state of the practice develop-

ers. Furthermore, our results could also be different if we had

analyzed another software development network or projects

hosted on other repositories, such as private or industrial

projects.

Conclus ion Val idi ty . The conclusion validity concerns

issues that affect the ability to draw the correct conclusions

from the study (Wohlin et al., 2012). The approach used to an-

alyze our experiment results represents the main threat to the

conclusions we can draw from our study. Thus, we discussed

our results by presenting descriptive statistics and statistical

hypothesis tests. Besides, all researchers participated in the

data analysis process and discussions on the main findings to

mitigate the bias of relying on the interpretations of a single

person. Nonetheless, there may be several other important

issues in the collected data, not yet discovered or reported by

us.

User Evaluation Constantino et al. 2023

Table 6. Other features to improve the recommendations.

GitHub

User non–User Total

Tasks # # # %

Programming language 18 16 34 97

Communication in the project forums 13 10 23 66

Professional experience level 12 10 22 63

Language 11 10 21 60

Source code (libraries, APIs, features) 15 5 20 57

Location 3 10 13 37

Followers and following 6 5 11 31

Gender 1 4 5 14

7 Conclusion and Future Work

This work described a controlled experimental study to inves-

tigate the perceptions of the developers using CoopFinder

a prototype tool to support two strategies for recommend-

ing collaborations. This developer recommendation strategies

aim to connect developers of a specific project based on their

similar interests. The study involved 35 participants, 18 of

which were GitHub users, and 17 were non-users. Participants

answered the background questionnaire, the questionnaires

for the experiment tasks for both tools.

As results, participants pointed out that CoopFinder is

easy to use, intuitive, exciting, and supports project main-

tainer. Besides, we observed that participants were able to

perform tasks more easily using CoopFinder than GitHub.

For instance, they spent less time using CoopFinder. While

GitHub required more time to perform the tasks. It may in-

dicate the ease of use of the CoopFinder tool. Moreover,

about 66% of the participants answered that they would use or

recommend this tool. As future work, we intend to evaluate

CoopFinder in real context of use, to see how often the

recommendations actually foster collaboration.

8 Acknowledgments

Many thanks to participants of our experiment and reviewers.

This study is an extended version of the paper published in

the XVIII Brazilian Symposium on Collaborative Systems

(SBSC 2023). This research was partially supported by Brazil-

ian funding agencies: CAPES (88881.189537/2018-01) and

FAPEMIG (Grant PPM-00651-17).

References

Avelino, G., Passos, L., Hora, A., and Valente, M. T. (2016).

A novel approach for estimating truck factors. In Proc. of

the 24th International Conference on Program Compre-

hension (ICPC), pages 1–10.

Barcomb, A., Stol, K.-J., Fitzgerald, B., and Riehle, D. (2020).

Managing episodic volunteers in free/libre/open source

software communities. IEEE Transactions on Software

Engineering (TSE), 48(1):260–277.

Barcomb, A., Stol, K.-J., Riehle, D., and Fitzgerald, B. (2019).

Why do episodic volunteers stay in floss communities? In

Proc. of the 41st International Conference on Software

Engineering (ICSE), pages 948–959.

Basili, V. R., Shull, F., and Lanubile, F. (1999). Building

knowledge through families of experiments. IEEE Trans-

actions on Software Engineering (TSE), 25(4):456–473.

Basili, V. R. andWeiss, D. M. (1984). A methodology for col-

lecting valid software engineering data. IEEE Transactions

on Software Engineering (TSE), (6):728–738.

Bird, C. (2011). Sociotechnical coordination and collabora-

tion in open source software. In Proc. of the 27th Interna-

tional Conference on Software Maintenance (ICSM), pages

568–573.

Blincoe, K., Sheoran, J., Goggins, S., Petakovic, E., and

Damian, D. (2016). Understanding the popular users: Fol-

lowing, affiliation influence and leadership on github. In-

formation and Software Technology (IST), 70:30–39.

Canfora, G., Di Penta, M., Oliveto, R., and Panichella, S.

(2012). Who is going to mentor newcomers in open source

projects? In Proc. of the 20th International Symposium

on the Foundations of Software Engineering (FSE), pages

1–11.

Constantino, K., Belém, F., and Figueiredo, E. (2023a). Dual

analysis for helping developers to find collaborators based

on co-changed files: An empirical study. Journal of Soft-

ware: Practice and Experience (JSPE), pages 1–27.

Constantino, K. and Figueiredo, E. (2022). Coopfinder: Find-

ing collaborators based on co–changed files. In Proc. of

the IEEE Symposium on Visual Languages and Human-

Centric Computing (VL/HCC), pages 1–3.

Constantino, K., Prates, R., and Figueiredo, E. (2023b). Rec-

ommending collaborators based on co–changed files: A

controlled experiment. In Proc. of the 18th Brazilian Sym-

posium on Collaborative Systems, pages 154–168.

Constantino, K., Souza, M., Zhou, S., Figueiredo, E., and

Kästner, C. (2021). Perceptions of open-source software

developers on collaborations: An interview and survey

study. Journal of Software: Evolution and Process (JSEP),

33:e2393.

Constantino, K., Zhou, S., Souza, M., Figueiredo, E., and

Kästner, C. (2020). Understanding collaborative software

development: An interview study. In Proc. of the 15th

International Conference on Global Software Engineering

(ICGSE), page 55–65.

Corbin, J. and Strauss, A. (2014). Basics of Qualitative

Research: Techniques and Procedures for Developing

User Evaluation Constantino et al. 2023

Grounded Theory.

Costa, C., Figueirêdo, J., Pimentel, J. F., Sarma, A., andMurta,

L. (2021). Recommending participants for collaborative

merge sessions. IEEE Transactions on Software Engineer-

ing (TSE), 47(6):1198–1210.

Crowston, K. and Fagnot, I. (2018). Stages of motivation for

contributing user-generated content: A theory and empiri-

cal test. International Journal of Human-Computer Studies

(IJHCS), 109:89–101.

Davis, F. D. (1989). Perceived usefulness, perceived ease of

use, and user acceptance of information technology. MIS

Quarterly (MISQ), pages 319–340.

de Neira, A. B., Steinmacher, I., and Wiese, I. S. (2018).

Characterizing the hyperspecialists in the context of crowd-

sourcing software development. Journal of the Brazilian

Computer Society, 24(1):1–16.

Ferreira, M., Valente, M. T., and Ferreira, K. (2017). A

comparison of three algorithms for computing truck factors.

In Proc. of the 25th International Conference on Program

Comprehension (ICPC), pages 207–217.

Fisher, R. A. (1992). The arrangement of field experiments.

In Breakthroughs in Statistics, pages 82–91.

Flick, U. (2018). Designing Qualitative Research. Qualitative

Research Kit.

Franco, M. F., Rodrigues, B., and Stiller, B. (2019). Men-

tor: The design and evaluation of a protection services

recommender system. In Proc. of the 15th International

Conference on Network and Service Management (CNSM),

pages 1–7.

Gamalielsson, J. and Lundell, B. (2014). Sustainability of

open source software communities beyond a fork: How

and why has the libreoffice project evolved? Journal of

Systems and Software (JSS), 89:128–145.

Gousios, G., Pinzger, M., and Deursen, A. v. (2014). An

exploratory study of the pull-based software development

model. In Proc. of the 36th International Conference on

Software Engineering (ICSE), pages 345–355.

Gousios, G., Storey, M.-A., and Bacchelli, A. (2016). Work

practices and challenges in pull-based development: The

contributor’s perspective. In Proc. of the 38th Interna-

tional Conference on Software Engineering (ICSE), pages

285–296.

Gousios, G., Zaidman, A., Storey, M.-A., and Deursen, A. v.

(2015). Work practices and challenges in pull-based devel-

opment: The integrator’s perspective. In Proc. of the 37th

International Conference on Software Engineering (ICSE),

volume 1, pages 358–368.

Jiang, J., He, J.-H., and Chen, X.-Y. (2015). Coredevrec:

Automatic core member recommendation for contribution

evaluation. Journal of Computer Science and Technology

(JCST), 30(5):998–1016.

Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones,

P. W., Hoaglin, D. C., El Emam, K., and Rosenberg, J.

(2002). Preliminary guidelines for empirical research in

software engineering. IEEE Transactions on Software

Engineering (TSE), 28(8):721–734.

Kononenko, O., Baysal, O., and Godfrey, M.W. (2016). Code

review quality: How developers see it. In Proc. of the 38th

International Conference on Software Engineering (ICSE),

pages 1028–1038.

Miller, R. and Siegmund, D. (1982). Maximally selected chi

square statistics. Biometrics, pages 1011–1016.

Minto, S. and Murphy, G. (2007). Recommending emergent

teams. In Proc. of the 4th International Conference on

Mining Software Repositories (MSR), pages 5–5.

Oliveira, J., Pinheiro, D., and Figueiredo, E. (2020). Jexpert:

A tool for library expert identification. In Proc. of the 34th

Brazilian Symposium on Software Engineering (SBES),

pages 386–392.

Oliveira, J., Viggiato, M., and Figueiredo, E. (2019). How

well do you know this library? mining experts from source

code analysis. In Proc. of the XVIII Brazilian Symposium

on Software Quality (SBQS), pages 49–58.

Pham, R., Singer, L., Liskin, O., Figueira Filho, F., and Schnei-

der, K. (2013). Creating a shared understanding of testing

culture on a social coding site. In Proc. of the 35th Interna-

tional Conference on Software Engineering (ICSE), pages

112–121.

Pinto, G., Steinmacher, I., and Gerosa, M. (2016). More

common than you think: An in-depth study of casual con-

tributors. In Proc. of the 23rd International Conference on

Software Analysis, Evolution, and Reengineering (SANER),

volume 1, pages 112–123.

Qiu, H. S., Nolte, A., Brown, A., Serebrenik, A., and

Vasilescu, B. (2019). Going farther together: The impact

of social capital on sustained participation in open source.

In Proc. of the 41st International Conference on Software

Engineering (ICSE), pages 688–699.

Rahman, M.M., Roy, C. K., Redl, J., and Collins, J. A. (2016).

Correct: Code reviewer recommendation at github for ven-

dasta technologies. In Proc. of the 31st International Con-

ference on Automated Software Engineering (ASE), page

792–797.

Ricci, F., Rokach, L., and Shapira, B. (2011). Introduction to

recommender systems handbook. InRecommender Systems

Handbook, pages 1–35.

Salton, G. (1971). The smart retrieval system: Experiments

in automatic information retrieval.

Salton, G. (1989). Automatic text processing: The transforma-

tion, analysis, and retrieval of. Reading: Addison-Wesley,

169.

Salton, G. and Harman, D. (2003). Information retrieval. In

Encyclopedia of Computer Science.

Shah, S. K. (2006). Motivation, governance, and the viabil-

ity of hybrid forms in open source software development.

Management Science, 52(7):1000–1014.

Steinmacher, I., Pinto, G., Wiese, I. S., and Gerosa, M. A.

(2018). Almost there: A study on quasi-contributors in

open-source software projects. In Proc. of the 40th Interna-

tional Conference on Software Engineering (ICSE), pages

256–266.

Steinmacher, I., Silva, M. A. G., Gerosa, M. A., and Redmiles,

D. F. (2015). A systematic literature review on the barri-

ers faced by newcomers to open source software projects.

Information and Software Technology (IST), 59:67–85.

Surian, D., Liu, N., Lo, D., Tong, H., Lim, E.-P., and Falout-

sos, C. (2011). Recommending people in developers’ col-

laboration network. In Proc. of the 18th Working Confer-

User Evaluation Constantino et al. 2023

ence on Reverse Engineering (WCRE), pages 379–388.

Tamburri, D. A., Kruchten, P., Lago, P., and Van Vliet, H.

(2015). Social debt in software engineering: Insights from

industry. Journal of Internet Services and Applications

(JISA), 6(1):1–17.

Thongtanunam, P., Tantithamthavorn, C., Kula, R. G.,

Yoshida, N., Iida, H., and Matsumoto, K.-i. (2015). Who

should review my code? a file location-based code-

reviewer recommendation approach for modern code re-

view. In Proc. of the 22nd International Conference on

Software Analysis, Evolution, and Reengineering (SANER),

pages 141–150.

Vasilescu, B., Filkov, V., and Serebrenik, A. (2015a). Percep-

tions of diversity on github: A user survey. In Proc. of the

8th International Workshop on Cooperative and Human

Aspects of Software Engineering (CHASE), pages 50–56.

Vasilescu, B., Posnett, D., Ray, B., van den Brand, M. G.,

Serebrenik, A., Devanbu, P., and Filkov, V. (2015b). Gen-

der and tenure diversity in github teams. In Proc. of the

33rd International Conference on Human Factors in Com-

puting Systems (CHI), pages 3789–3798.

Wilcoxon, F. (1992). Individual comparisons by ranking

methods. In Breakthroughs in Statistics, pages 196–202.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., and Reg-

nell, B. (2012). Experimentation in Software Engineering.

Wu, Y., Kropczynski, J., Shih, P. C., and Carroll, J. M. (2014).

Exploring the ecosystem of software developers on github

and other platforms. In Proc. of the 17th ACM Confer-

ence on Computer Supported Cooperative Work & Social

Computing (CSCW), pages 265–268.

Yu, Y., Wang, H., Filkov, V., Devanbu, P., and Vasilescu, B.

(2015). Wait for it: Determinants of pull request evalua-

tion latency on github. In Proc. of the 12th International

Conference on Mining Software Repositories (MSR), pages

367–371.

Zhou, M. and Mockus, A. (2011). Does the initial environ-

ment impact the future of developers? In Proc. of the 33rd

International Conference on Software Engineering (ICSE),

pages 271–280.

	Introduction
	Problem Statement
	Developer Recommendation Strategies
	Developer Recommendation Design
	Implementation Technologies
	Interface and Interaction

	Study Design
	Study Goal
	Research Questions
	Hypotheses Formulation
	Research Method

	Study Results
	Participant Overview
	How easy is it to find collaborators using CoopFinder? - RQ1
	Does the expertise with GitHub impact on the effectiveness of finding collaborators? - RQ2
	How fast is it to find a collaborator using CoopFinder? - RQ3
	How do participants perceive CoopFinder? - RQ4
	How could the developer recommendations be improved? - RQ5

	Threats to Validity
	Conclusion and Future Work
	Acknowledgments

