
A Preliminary Interview Study on Developers’
Perceptions of Code Smell Detection in Industry

Felipe Ribeiro1, Eduardo Fernandes2, and Eduardo Figueiredo1

1 Federal University of Minas Gerais, Belo Horizonte, Brazil
felipelrib@ufmg.br, figueiredo@dcc.ufmg.br

2 University of Southern Denmark, Odense, Denmark
edmf@mmmi.sdu.dk

Abstract. This paper presents a preliminary interview study aimed to
understand i) how practitioners perceive code smells and ii) whether/why
developers use code smell detection tools. We carefully designed an struc-
tured interview protocol composed of six major questions. We inter-
viewed seven developers, recruited by convenience, who work for major
companies worldwide on software maintenance and evolution. We fol-
lowed strict guidelines for thematic synthesis to analyze the interview
texts. The perception of interviewees on code smells is in line with the
traditional definition, even when developers lack academic formation. All
interviewees were concerned with adding code smells while they produce
code, although a half of them feel that their pairs do not share these con-
cerns. Most interviewees use detection tools, but costs with tool setup
and company culture may prevent developers from using them.

Keywords: Code smell detection · Software tool · Interview study

1 Introduction

This paper introduces a preliminary interview study on code smell detection in
industry. We rely on a six-question interview protocol to ask developers about
i) how they perceive code smells, ii) how concerned developers are about adding
code smells while they produce source code, and iii) whether/why they use (or do
not use) code smell detection tools. We recruited seven developers who work for
major companies. We interviewed each developer in isolation, for commodity and
to avoid biases, via Telegram Messenger. We performed a qualitative analysis on
the interview texts based on thematic synthesis guidelines [1].

Previous work [4, 5, 7] discusses that developers may be reluctant or too busy
to use automated software development tools. This is particularly true in the
case of the many tools available [2] that change the internal code structure.
For instance, the use of refactoring tools has been neglected by developers [4, 7]
because developers are afraid that the tools will affect the software functionalities
and introduce bugs. In our study, we are specifically interested in understanding
why our target developers do not use code smell detection tools.



2 F. Ribeiro et al.

The research questions are as follows: RQ1: How do developers define code
smells? – Previous work [6, 8, 9] investigated whether developer’s perception on
code smells contrasts with the academic wisdom. Unfortunately, the most recent
related research study [8] was conducted in 2016, so that the perceptions may
not reflect the recent generation of developers. RQ2: Are developers concerned
about adding code smells to the source code they produce? RQ3: Do developers
use tools to detect code smells on the source code they produce, consume, or
maintain? We assess the extent to which the recent generation of developers
embraces code smell detection tool adoption. Our study artifacts are available
online3.

2 Study Design

The interview questions and follow-up questions are available in our website.
We first approached interviewees with the main questions and, depending on
their answers, we asked for clarifications or made follow-up questions as needed
to deeply explore the subject and proper answer our research questions. For
reference, the two first questions aim to collect background information about
the interviewees. Likewise, the other four questions, identified as C1 to C4, are
related to the goal of our study and its research questions.

We designed core interview questions to address each of the research questions
of our study. C1 (What do you understand as being a code smell? ) directly asks
interviewees about their understanding of code smells, which means that C1 and
its follow-up questions are meant to address RQ1. Both C2 (Are you concerned
about adding code smells to the source code you produce? ) and C3 (Do you
believe that your teammates share the same concern? ) ask interviewees about
their concerns (or concerns of their teammates) about adding code smells in the
source code. Therefore, these interview questions, and their follow-up questions,
aim at answering RQ2. Finally, C4 (Do you use tools to detect code smells on
the code you produce, consume or maintain? ) is about code smell detection tools
and, therefore, it is meant to provide answers to RQ3.

All interviewees are from Brazil; most of them work internationally. We se-
lected the interviewees with four to eight years of experience in software devel-
opment because our goal is to investigate the perception of a new generation of
developers since the main related work is about ten years old [6, 8, 9].

3 Results on Perceptions about Code Smells (RQ1)

Figure 1 depicts our results for the thematic synthesis procedures applied to the
tabulated answers on the interviewees understanding of code smells (C1). The
root node of the tree corresponds to the major theme. All leaves from the trees
corresponds to codes found during the code extraction step, being represented
as nodes with a solid border (concrete codes), with exception to the root node.

3 https://github.com/felipelrib/preliminary-study-code-smells-in-industry



Developers’ Perceptions of Code Smell Detection in Industry 3

Some of the codes were grouped into themes present in the second and third
levels, being represented as nodes with dashed borders (abstract codes). All leaf
nodes have a number annotated to it. The number corresponds to the frequency
of the content of the node in the answers, i.e., the amount of times the code was
extracted from different answers for the same question.

Definition of
code smell

Code-
related issues

Bad code
writing practice

Development-
related issues

Small code problem

Bad code design

Bug-prone code

Bad code structure

Distinguishable code pattern

Code with bad readability

Symptomatic code

Potential bad code design

Existing bad code design

Bad-looking working code

Codebase problem

Code that is worth checking

Smelly code

Non-bug problem

Software maintainability threat

Technical debt

Software project threat

1

13

2

4

1

3

1

1

1

1

1

1

2

5

1

2

1

1

1

1

Fig. 1. Perceptions about Code Smells

The first intermediate level includes three elements: Code-related issues; Bad
code writing practice; and the theme Development-related issues. The theme
Code-related issues groups the nodes where the idea is related to the source
code of the system. The code Bad code writing practice relates code smells to a
bad practice from developers, associating the process to the results. The theme
Development-related issues groups codes where the code smell is seen as an issue
to the software development process.

The second intermediate level includes eight codes and two minor themes as
follows: Small code problem; Bad code design; Bug-prone code; Bad code struc-
ture; Distinguishable code pattern; Code with bad readability ; Symptomatic code;
Software maintainability threat ; Technical debt ; and Software project threat. The
theme Symptomatic code is worth noting since it is composed by some vague
codes that, when grouped, mean the source code appears to have a problem in
the way it was wrote – even if it works as intended. The following quote is an
example of answer that specifically relates to this code: “Code smell is [...] not
a bug or error – the code works, it is just possibly badly designed” (Interviewee
I7). The third level contains the remaining seven codes.

Some of our results stand out as follows. Regarding the code smell definition,
we found it curious that developers define code smells in terms of aspects that
may not be obvious. For instance, there is this assumption in industry that smelly
code can lead to bugs. If confirmed by empirical research, this can support the
point of view of Interviewee I6 from which we extracted the code Bug-prone
code: “Parts of some code [...] that potentially can bring some future bug”.

Another code that is worth further discussion is the Technical debt, implying
a need for refactoring at some point during the life cycle of a software system.



4 F. Ribeiro et al.

It was interesting to get this point of view from at least one of the interviewees
because it somehow supports the idea that fixing code smells is relevant to some
extent. In the end, we noticed that all answers are in line with the traditional
definition of code smells [3], even when some interviewees lacked higher educa-
tion. This could lead to the perception that the intuition behind code smells
might be learned by practice, as developers with some experience can better
understand the practical effects of dealing with code smells.

4 Results on Concerns about Adding Code Smells (RQ2)

The interview questions that addresses RQ2 were C2 and C3. For C2, all seven
interviewees claimed that they are concerned with adding code smells to their
source code. On the other hand, C3 answers were balanced between “Yes,”
“No,” and a half-term “Not all”, meaning that some interviewees understand
that some of their colleagues share the same concern about code smells as them
when coding, but others do not. The table with summarized answers is available
in our website. All interviewees answered “Yes” for question C2, and there were
three “Yes,” two “No,” and two “Not all” for question C3. The answer “Not all”
was not literal in the answers from interviewees I3 and I6, but was summarized
in this way for a better overview in the table.

Figure 2 is a tree of themes on the reasons the interviewees mentioned not to
add a code smell in their source codes. The major theme is represented by the
root node, Reasons not to add code smells, linked with some ideas extracted in
form of codes and themes from the answers of interviewees to the question C2.

Reasons not to add code smells
Existing development issues

Avoid future development problems
Code comprehension difficulty

Code problem symptom

3

2
1

1

Fig. 2. Reasons Not to Add Code Smells

The first intermediate level corresponds to the code Avoid future development
problems, illustrated by the quote “Adding [code smells] can potentially make my
life harder in the future” (Interviewee I6) and the theme Existing development
issues. The theme Existing development issues groups codes that refer to the
issues that are raised during the development when code smells are present.

The second intermediate level has two codes, with emphasis on Code problem
symptom. As the interviewee explained, the presence of code smells is a symptom
of bigger problems in the source code, but leaving the “problems” as something
vague. This is illustrated by the following quote: “Code smells exist and are in
fact a strong sign of something funky (sic) going on” (Interviewee I7).

Figure 3 is a tree of themes on if the interviewees believe their teammates
share the same concerns as them about code smells. The main theme is repre-
sented with the root node Do you believe that your teammates share the same



Developers’ Perceptions of Code Smell Detection in Industry 5

concern? Why?, being a “yes or no” question. Through this question, intervie-
wees were expected to discuss their points of view on the topic.

Do you believe
that your

teammates share
the same

concern? Why?

Yes

No

Concern about code smells as a requirement to work

How code smells are handled

Code smells understanding from developers

Code smells priority in a project

Teammates' code is hard to understand

Developers strive to use good development practices

Team performs code review

Code smells seen simply as a list of don'ts

Not knowing code smells impacts

Code smells occurence normalization

Delivery over quality

Code smell analysis is costly and not a priority

1

3

3
1

4

7

3

1

1

1

2

1

1

2

Fig. 3. Why Developers Believe Their Teammates (Do Not) Share Their Concerns

The first intermediate level is composed of the possible answers Yes and No.
Their frequencies follow the previous definition, being the sum of their children
frequencies, and does not represent the amount of positive or negative answers.
Since these nodes were extracted as part of the answer itself, they are not counted
as codes by themselves. Additionally, for both Figures 3 and 4, the children of
the themes from this level is composed only by codes that ratify the theme and
where the interviewees gave that initial answer, i.e., if a interviewee answered
“No,” but provided context that might be encoded into the “Yes” theme, this
context was not considered for the taxonomy.

The second intermediate level, for the Yes answers, has the theme How code
smells are handled and the code Concern about code smells as a requirement
to work. These two elements present reasons why the interviewees believe their
teammates are concerned about code smells. Regarding No, we have two themes
and one code as follows. The theme Code smells understanding from develop-
ers groups some codes explaining that their teammates might not have enough
knowledge about code smells and their impacts, or they simply consider their
presence as something normal. The code Teammates’ code is hard to understand
means that the interviewee considers that code with low understandability is a
result of a team that does not care about code smells. Finally, the theme Code
smells priority in a project groups codes reporting that the teammates and the
project management are more focused in delivering the functional requirements
than in the overall project quality.

The third intermediate level consists of two codes for the Yes answers and
five codes for the No answers. It is worth noting the code Team performs code
review as a reason why some interviewees believe their teammates are concerned
about code smells as they use this process, among other reasons, to analyze the
presence of code smells and refactor the code as needed. This is illustrated by
the following quote: “We also review each other’s code, so ’code smell’ normally
doesn’t make it to the final product” (Interviewee I4). Our perception is that a
good quality code review is capable of detecting and resolving code smells.

The interviewees seemed concerned about avoiding inserting code smells in
source code, even reassuring some reasons why this addition would be an issue.



6 F. Ribeiro et al.

Some interviewees reported that some of their colleagues appeared to have the
same concerns. This claim is sustained by the perception that colleagues would
apply good development practices and review code to achieve a better code
quality. Others did not seem to share the same concerns, being justified by: i)
their apparent lack of understanding of code smells and their impacts; ii) the
source code produced by their colleagues being hard to understand; or iii) the
lack of prioritization that code smells had in the scope of the project and its
tasks.

The code Delivery over quality, for instance, refers to the interviewees de-
scribing that developers seem to be more focused on the requirements they are
asked to implement rather than on the code quality. This may not mean neces-
sarily that the teammates do not have the knowledge on code smells, but they
are pressured to put this concern aside to deliver the clients’ requirements faster.
Meanwhile, the code Not knowing code smells impacts presents an idea that the
lack of knowledge about code smells from teammates is latent due to this exact
behavior, since the delivery is prioritized over this concern, possibly ignoring the
future problems that could happen. This is illustrated by the following quote:
“Maybe they don’t see the direct impact that could cause, and they care more
about delivering” (Interviewee I6).

5 Results on the Use of Detection Tools (RQ3)

For question C4, two out of the seven interviewees do not use detection tools in
their projects, while five of them use. Out of those five, I7 emphasized that they
use tools in their company project, but they do not use any tools in personal
projects, giving reasons why not, so we have attributed their answer as “Yes/No”.
The table with summarized answers is available in our website.

The tools the interviewees said they use in their projects and at which devel-
opment stages are also available in the website. Interviewee I7 informed that the
tool their team use to detect code smells is developed by their company and only
available there, not being publicly available. They also informed that their team
uses another public library to detect code smells and detect vulnerabilities while
building their projects, but they did not remember the name at the time, thus
we attributed their answer as “Unknown”. We see that, from all interviewees
that said they use detection tools in their projects, all of them use the tools in
their produced code, during the development stage.

Figure 4 is a tree of themes on if the interviewees use code smell detection
tools and at which development stages, or else why they do not use tools. The
main theme is represented with the root node Do you use tools to detect code
smells on the code you produce, consume or maintain? If yes: when? If not:
why?, being a “yes or no” question. Through this question, the interviewees
were expected to discuss their points of view on the topic.

The first intermediate level has the possible answers Yes and No. The second
intermediate level has the theme Detection while producing code; the code Au-
tomated detection on maintained code; and the theme Detection while reviewing



Developers’ Perceptions of Code Smell Detection in Industry 7

Do you use tools to detect
code smells on the code

you produce, consume or
maintain? If yes: when? If

not: why?

Yes

No

Automated detection on maintained code

Detection while producing code

Concerns about tools setup

Concerns about team management

Code smells detection is not a prioriy

Automated detection on produced code

Automated detection during software build

Automated detection on tested code

Automated detection on commits

Automated detection on MRs (merge requests)

Automated detection during code review

Setup of detection tools is costly in personal projects

Detection while reviewing code

Tool setup is not worth it

Automated detection requires collective effort

Automated detection not encouraged by the team

1

1

1

Company culture

11

6

5

1

5

1

2

1

2
1

3

1

1

1

1

3

Fig. 4. Use of tools to detect code smells on produced, consumed or maintained code

code. These three, children of Yes, relate the interviewees answers to the stage of
the code subject to the tools detection. From the No answer, we have the code
Company culture; the theme Concerns about tools setup; the code Code smells
detection is not a priority ; and the theme Concerns about team management.
These four nodes were extracted from the interviewees’ answers to why they do
not use code smell detection tools in their projects. The third intermediate level
consists of six codes for the Yes answers and four codes for the No answers.

We observed that the usage of detection tools on produced code can be done
in different stages of development while producing the code, as the interviewees
reported using tools during the software build or while adding automated tests
to the new code. It is very common for the interviewees to use tools for newly
produced code that is being reviewed by their peers, be it automatically after
pushing code commits or during code reviews on open merge requests (MRs) –
also called pull requests (PRs) depending on the Git tool used. This is illus-
trated by the following quote: “I do run it again while reviewing code done by
teammates to make sure this practice is being followed” (Interviewee I2).

Additionally, from the interviewees that do not use code smell detection
tools, we could see scenarios where the usage of tools was not encouraged by the
team management due to lack of prioritization in face of other functional and
cross-functional requirements. Moreover, specifically for personal projects, some
interviewees mentioned the fact that the setup of these tools would be too costly
given the size of the projects. Another interviewee mentioned laziness as a factor
to prevent them to setup tools in personal projects, justifying that the potential
problems would not worth the cost of configuring a tool. This is shown in the
following quote: “In personal projects it would be mostly a matter of laziness –
there’s no easier setup than no setup at all, and it is easy to justify to myself
that the potential problems aren’t worth the hassle” (Interviewee I7).

None of the interviewees answered that they use detection tools on consumed
code, may it be a library or imported code from other projects. I2 said that they
never thought about using tools on this kind of code: “I never thought about
doing it in code I consume”. I1 mentioned that they never maintain consumed
code, so they would never use tools on it: “I do not run any linting or any testing



8 F. Ribeiro et al.

whatsoever for code I consume (third party, open source projects, etc.) as part
of a personal policy of not maintaining code that does not belong to me”.

6 Threats to Validity

Construct Validity: To have an interview protocol that is well-structured and
sufficient to address our RQs, we decided to define the interview protocol in pairs.
One of the authors proposed the first version and we had meetings to iteratively
refine the questions and add new questions. We recruited the interviewees based
on convenience (industry colleagues) and arbitrarily (as they are experienced,
work for different development teams and are trustworthy). We had meetings to
set up the way how we approach the developers during the interview conduction.

Internal Validity: We conducted the interviews via Telegram for conve-
nience. This may prevent interviewees from engaging in the interviews, thereby
resulting in information loss. In contrast to interviewing people by email, the tool
allowed to closely interact with the interviewees and ask questions in a more effi-
cient and reactive way. We tried to keep interviewees engaged with the interview
by asking additional/follow-up questions, especially to make sure they under-
stand the questions. The use of email could prevent us from clarifying things to
interviewees so they answer questions properly.

Conclusion Validity: Inappropriate extraction and analysis of interview
data may lead to information loss and harm the study conclusions. To guide
us on performing the textual data analysis, we followed guidelines for thematic
synthesis [1]. All procedures were performed in a pair. Three sessions to extract
the codes (open coding). Two sessions to sort the codes (axial coding) and build
the taxonomies, also based on literature guidelines [1].

Acknowledgements: CAPES, CNPq and FAPEMIG funded this work.

References

1. Cruzes, D., Dyba, T.: Recommended steps for thematic synthesis in software engi-
neering. In: 5th ESEM. pp. 275–284 (2011)

2. Fernandes, E., Oliveira, J., Vale, G., Paiva, T., Figueiredo, E.: A review-based com-
parative study of bad smell detection tools. In: 20th EASE. pp. 18:1–18:12 (2016)

3. Fowler, M.: Refactoring. Addison-Wesley Professional, 2nd edn. (2018)
4. Kim, M., Zimmermann, T., Nagappan, N.: An empirical study of refactoring. IEEE

Transactions on Software Engineering 40(7), 633–649 (2014)
5. Lethbridge, T., Sim, S., Singer, J.: Studying software engineers. Empirical Software

Engineering 10, 311–341 (2005)
6. Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., De Lucia, A.: Do they really

smell bad? In: 30th ICSME. pp. 101–110 (2014)
7. Sharma, T., Suryanarayana, G., Samarthyam, G.: Challenges to and solutions for

refactoring adoption. IEEE Software 32(6), 44–51 (2015)
8. Taibi, D., Janes, A., Lenarduzzi, V.: How developers perceive smells in source code.

Inf. Softw. Technol. 92, 223–235 (2017)
9. Yamashita, A., Moonen, L.: Do developers care about code smells? In: 20th WCRE.

pp. 242–251 (2013)


