
RIFDiscoverer: A Tool for Finding Resource Interaction Failures
Euler Marinho

Federal University of Minas Gerais
Belo Horizonte, Minas Gerais, Brazil

Izaias Machado Pessoa Neto
Federal University of Ceará

Sobral, Ceará, Brazil

Fischer Ferreira
Federal University of Itajubá
Itabira, Minas Gerais, Brazil

João P. Diniz
Federal University of Minas Gerais
Belo Horizonte, Minas Gerais, Brazil

Eduardo Figueiredo
Federal University of Minas Gerais
Belo Horizonte, Minas Gerais, Brazil

ABSTRACT
Mobile application quality has become a crucial aspect. In spite
of the numerous studies concerning testing methods, tools, and
techniques, the field of mobile application testing is still under
development. In mobile applications, resource interaction failures
occur when resources influence the behavior of other resources.
They can compromise the application and harm the user experience.
This paper presents RIFDiscoverer a tool for assisting developers
and testers to deal with resource interaction failures in Android
applications. Our preliminary results indicates a potential of the
tool to find resource interaction failures. The source code and a
demo video are available on GitHub at https://github.com/byte-
skiing/RIFDiscoverer.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

KEYWORDS
Software Quality, Software Testing, Resource Interaction Failures
ACM Reference Format:
Euler Marinho, Izaias Machado Pessoa Neto, Fischer Ferreira, João P. Diniz,
and Eduardo Figueiredo. 2024. RIFDiscoverer: A Tool for Finding Resource
Interaction Failures. In . ACM, New York, NY, USA, 5 pages. https://doi.org/
10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Mobile applications have been developed not only for entertain-
ment purposes but also for targeting safety and critical domains [3].
As a consequence, the quality of mobile applications has become
a crucial aspect, for instance, by promoting the use of testing as a
quality assurance practice [15, 16]. However, despite the availability
of testing methods, techniques, and tools, the field of mobile ap-
plication testing is still under development [9]. These applications
are often executed on a variety of platform configurations [11]
and each platform configuration has different platform resources.
These resources may be related to communication capabilities (e.g.,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Wi-Fi, Bluetooth, Mobile Data, and GPS), sensors (e.g., Accelerom-
eter, Gyroscope, and Magnetometer), and user-controlled options
(e.g., Battery Saver and Do Not Disturb). However, applications
can present unexpected behaviors since the resource interactions
can introduce failures that manifest themselves in specific resource
combinations [20].

Resource interaction occurs when one or more resources in-
fluence the behavior of other resources, similarly to the feature
interaction problem in configurable software systems [4, 5] and
telecommunication systems [7]. An example of resource interac-
tion failure occurs for Wikimedia Commons app when a pair of
resources are disabled [24]. The high number of input combinations
is a challenging aspect for testing software systems in general, since
the effort of the exhaustive testing is generally prohibitive. For in-
stance, it is the case of configurable systems [4, 8, 10] in which all
tests must be executed in several configurations. An alternative
for decreasing the testing effort is the use of sampling strategies
involving the selection of a subset of input combinations. Sampling
strategies are a well known technique, such as in the domain of
configurable systems [4]. They have been shown to be effective in
finding faults, even with the number of combinations tested much
lower than the universe of all possible combinations [10, 21, 23].

In this paper, we introduce RIFDiscoverer, a tool that helps de-
velopers and testers to deal with resource interaction failures in
Android applications. We have chosen a simple but responsive user
interface for RIFDiscoverer. By using an extensible architecture, it
can be used in research efforts aiming to deal with scalability fac-
tors, for example, when interacting with physical or virtual device
farms [18]. Our preliminary results indicates a potential of the tool
to find resource interaction failures.

This paper is organized as follows. In Section 2, we discuss back-
ground information and some related work. In Section 3, we present
the architecture, some design and implementation aspects of RIFDis-
coverer. Section 4 presents a preliminary evaluation of the tool.
Section 5 presents some concluding remarks.

2 BACKGROUND AND RELATEDWORK
This section discusses resource interaction failures (Section 2.1) and
presents an overview of sampling testing strategies (Section 2.2).

2.1 Resource Interaction Failures
We define “resource interaction failures” as failures that occur when
resources influence the behavior of other resources. This defini-
tion is inspired by the feature interaction problem in configurable
systems [4]. Our study includes 12 resources often used by An-
droid applications and present in most devices: Location, Wi-Fi,

https://github.com/byte-skiing/RIFDiscoverer
https://github.com/byte-skiing/RIFDiscoverer
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Marinho et al.

Mobile Data, Bluetooth, Auto Rotate, Battery Saver, Do Not
Disturb, Accelerometer, Gyroscope, Magnetometer, Proximity,
and Camera.

Figure 1 presents a code excerpt of Wikimedia Commons Android
app, showing a case of a resource interaction failure [24]. This open
source application allows users to upload pictures from the device
to Wikimedia Commons, the image repository for Wikipedia1. The
Android Platform supports the positioning via GPS or network (Wi-
Fi/Mobile Data). The issue describes a situation involving the crash
of the application when it is opened and both GPS and network are
disabled [6]. The failure is caused by the call of getLastKnownLo-
cation to get the current location via network (line 3). However,
this call returns a null value which is later used in the construction
of an object to store the location-related values (line 5). As a result,
the application crashes because of a NullPointerException.

1 l o ca t i onManage r . ge tLas tKnownLoca t ion (
Locat ionManager . GPS_PROVIDER) ;

2 i f (l a s tKL == null) {
3 l a s tKL = loca t i onManage r . ge tLas tKnownLoca t ion

(Locat ionManager . NETWORK_PROVIDER) ;
4 }
5 return LatLng . from (l a s tKL) ; / / An o b j e c t i s

c o n s t r u c t e d from th e l a t i t u d e and
l o n g i t u d e c o o r d i n a t e s

Figure 1: Code Excerpt fromWikimedia Commons app.

2.2 Sampling Testing Strategies
As the exhaustive exploration of the input space in configurable
software systems is often very expensive or even impractical (for
instance, by brute-force), an alternative to balance the effort and the
failure-detection capability is to use sampling testing strategies [1,
10, 21, 23]. The use of sampling testing has been promising to find
feature interaction failures [1, 10, 21, 23] and resource interaction
failures [20]. For instance, the strategy One-Disabled [1] selects
settings with only one resource disabled and all other resources
enabled. The strategy One-Enabled selects settings with only one
resource enabled and the other resources disabled. The strategy
Most-Enabled-Disabled combines two sets of samples: one set in
which most of the resources are enabled and other set in which
most of the resources are disabled. In the case when constraints
between resources do not exist, it establishes two settings: one
with all resources enabled and one with all resources disabled [21].
The strategy Random creates 𝑛 distinct settings with all resources
randomly enabled or disabled. We used the implementation of this
strategy present in FeatureIDE [25].

2.3 Related Work
Table 1 provides a brief comparison between our tool and tools
of similar previous studies. In each case, the columns refer to the
individual studies. The rows show the characteristics of the studies,
such as which strategy or technique was used. We use a dash ‘-’

1https://commons-app.github.io/

to indicate information not available in the respective study. To
our knowledge, RIFDiscoverer is a tool that explicitly works with a
wide range of device sensors.

3 THE RIFDISCOVERER TOOL
This section provides a comprehensive overview of the RIFDiscov-
erer architecture (Section 3.1), design and implementations con-
cerns taken into consideration (Section 3.2) and the instrumentation
used for testing (Section 3.3).

3.1 Architecture
Figure 2 presents the general architecture of RIFDiscoverer. The
application requires the user to choose one available testing strat-
egy (One-Disabled, One-Enabled, Most-Enabled-Disabled, Pairwise,
Random, Custom, IncLing [2], CASA [12], Chvatal [14], ICPL [13])
and specify the path where the instrumented Android project is
located. Once the testing strategy and execution parameters are
defined, the application communicates with the WebSocket Server
to start the execution of the tests. Before test execution, the Web-
Socket Server starts Genymotion Android emulator. Test Execution
Manager receives all settings and the number of executions, and
then it executes them one by one. Note that for each execution, the
order in which the settings are processed is random. The setting
processing script is responsible for executing the Gradle task that
runs the test suite, with only the enabled resources for the current
setting on the emulated device. After finished running the tests for
a setting, the WebSocket Server sends a message to the Application
to update a progress bar and the same is done for the following
setting.

Figure 2: Architecture of RIFDiscoverer.

3.2 Design and Implementation
The two key components of RIFDiscoverer are the application front-
end through which the user interacts with the tool and aWebSocket
Server that rapidly runs scripts and communicates with the other
application components.

For the front-end, we aim for an easy to use interface and a
way for the interface to communicate directly to Python running
on the user machine. For this reason, we choose Python EEL2.
This framework allows for the development of a web-based front-
end while maintaining a Python back-end. It facilitates seamless

2https://github.com/python-eel/Eel

https://commons-app.github.io/
https://github.com/python-eel/Eel

RIFDiscoverer: A Tool for Finding Resource Interaction Failures Conference’17, July 2017, Washington, DC, USA

Table 1: Comparison of Related Tools

RIFDiscoverer FicFinder [27] PREFEST [19] Vilkomir’s Tool [26] SetDroid [24]

Operating System Android Android Android Android Android

Strategies-Techniques Sampling Static Analysis Pairwise Each-Choice Setting-wise
metamorphic fuzzing

Comparison Elements
(Resources, hardware options) 14 - 4 5 > 50

interaction between the user interface and the underlying Python
code, enabling the front-end to directly call Python implemented
functions.

WebSocket Server is a separate component that uses Python
WebSockets3 library and runs alongside EEL, but in a separate
thread. This design was implemented to handle the execution of
scripts that takes a long time to complete, ensuring the application
remains responsive throughout the execution of testing strategies.
By running in a separate thread, WebSocket Server can manage
lengthy operations without blocking the application thread. This
approach ensures that users receive updates and can interact with
the interface even during extensive testing processes.

3.3 Test Instrumentation
We implemented a test instrumentation based on the UI Automator
framework4 to control the resources. The instrumentation is based
on Android instrumented tests, i.e., a type of functional test5. They
execute on devices or emulators and can interact with Android
framework APIs. We are to manage 7 resources interacting with
Android Quick Settings: Auto Rotate, Battery Saver, Bluetooth, Do
Not Disturb, Location,Mobile Data, andWi-Fi. We control the other
resources using third-party applications. For instance, Camera is
controlled by Lens Cap6 and the sensors (Accelerometer,Gyroscope,
Magnetometer, Proximity) are managed by Sensor Disabler7. The
test instrumentation consists of the function AdjustResourceStates
presented in Algorithm 1. For the required setting 𝑆 , we enable
(line 6) or disable (line 8) each resource state (line 4) according to
the state specified in the pair.

We implemented Resource_setup as a class with a static method
annotated with BeforeClass8. We extended each class of the test
suites with the implemented class. Therefore, the execution of tests
of a certain class is preceded by the execution of the setup method.
In the current implementation, we perform the verification of re-
source state (line 5) via Android APIs, such as LocationManager9
for the Location and TelephonyManager10 for the Mobile Data.
In other cases, we use the UI Automator features to find some screen
widgets related to the resource state. For example, we inspect the
sensors states by processing screens of Sensor Disabler. It is impor-
tant to emphasize that in our implementation the resources are only

3https://github.com/python-websockets/websockets
4https://developer.android.com/training/testing/ui-automator
5https://developer.android.com/training/testing/instrumented-tests
6https://github.com/percula/LensCap
7https://github.com/wardellbagby/Sensor-Disabler
8https://junit.org/junit4/javadoc/4.12/org/junit/BeforeClass.html
9https://developer.android.com/reference/android/location/LocationManager
10https://developer.android.com/reference/android/telephony/TelephonyManager

adjusted (lines 6 and 8) if necessary. Besides, we modified the build
scripts in order to use the Android Test Orchestrator11, a tool that
helps minimize possible shared states, a known factor associated
to flaky tests [22] and isolate the crashes.

Algorithm 1 Resource_setup
1: Input
2: S list of < 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒, 𝑠𝑡𝑎𝑡𝑒 > pairs
3: procedure AdjustResourceStates(𝑆)
4: for all 𝑝𝑎𝑖𝑟 ∈ 𝑆 do
5: if 𝑝𝑎𝑖𝑟 .𝑠𝑡𝑎𝑡𝑒 == true then
6: enable(𝑝𝑎𝑖𝑟 .𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒)
7: else
8: disable(𝑝𝑎𝑖𝑟 .𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒)
9: end if
10: end for
11: end procedure

We implemented Algorithm 2 for managing the executions of
the instrumented test suites. We used three executions (line 6) to
deal with flaky tests, and shuffled the settings to minimize order
dependencies between tests (line 8). Multiple execution is a common
strategy for detecting flaky tests. However, the optimal number of
re-executions to identify flaky tests is not defined [22]. One study
suggests a maximum of five re-executions [17]. Based on previous
essays, we set the default number of re-executions to three. We
took into account our time constraints for the experiments and
made the observation that this number is sufficient to detect flaky
tests. We call the function AdjustResourceStates (line 10) defined
in Algorithm 1 to adjust the states of all resources.

4 PRELIMINARY EVALUATION
To evaluate the usefulness of RIFDiscoverer, we applied it to Threema12,
a messenger focused on privacy and security. Table 2 presents the
characteristics of the study. The declared resources are identified
from the static analysis of the Android Manifest file. The tool takes
as input settings, i.e. lists of pairs (resource,state) where state
can be True or False depending on whether the resource is en-
abled or disabled. Our preliminary found a one resource interaction
failure in Threema. The failure we found (by a test named "testNo-
tificationWithoutAction") happens when Do Not Disturb is enabled.
This failure could let the user to loose an error notification, harming
its experience.
11https://developer.android.com/training/testing/junit-runner
12https://github.com/threema-ch/threema-android

https://github.com/python-websockets/websockets
https://developer.android.com/training/testing/ui-automator
https://developer.android.com/training/testing/instrumented-tests
https://github.com/percula/LensCap
https://github.com/wardellbagby/Sensor-Disabler
https://junit.org/junit4/javadoc/4.12/org/junit/BeforeClass.html
https://developer.android.com/reference/android/location/LocationManager
https://developer.android.com/reference/android/telephony/TelephonyManager
https://developer.android.com/training/testing/junit-runner
https://github.com/threema-ch/threema-android

Conference’17, July 2017, Washington, DC, USA Marinho et al.

Algorithm 2 Test_execution_manager
1: Input
2: AP application with extended tests
3: SL list of settings
4: Output
5: TR test reports
6: 𝑚𝑎𝑥𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠 ← 3 //default
7: for 𝑒𝑥𝑒𝑐 ← 1 to𝑚𝑎𝑥𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠 do
8: shuffle(𝑆𝐿)
9: for all 𝑠𝑡 ∈ 𝑆𝐿 do
10: AdjustResourceStates(𝑠𝑡)
11: Execute the whole test suite of 𝐴𝑃
12: end for
13: end for

Table 2: Evaluation of Threema Case Study

Characteristic Description

LOC 238,045
Test LOC 1,931
Test Cases 54

Settings Random(30), One-Disabled(12), One-Enabled(12),
Pairwise(8), Most-Enabled-Disabled(2)

Declared Resources Bluetooth, Camera, Location,
Mobile data, Wi-Fi

Failed Test Cases 1

5 CONCLUSION
This paper presented RIFDiscoverer, a tool that helps developers
and testers to deal with resource interaction failures. We have cho-
sen a simple but responsive user interface for RIFDiscoverer. We
described its architecture, design and implementation aspects, and
performed a preliminary evaluation. By using an extensible ar-
chitecture, it can be used in research efforts aiming to deal with
scalability factors, for example, when interacting with physical or
virtual device farms [18]. We plan further improvements on RIFDis-
coverer implementation. Currently, we are planning an adaptation
of the tool as an Web Application to be hosted in cloud comput-
ing platforms. Future studies can involve empirical studies with
application developers, deal with other kinds of resources, and the
portability of the tool to other mobile platforms.

REFERENCES
[1] I. Abal, C. Brabrand, and A. Wasowski. 2014. 42 Variability Bugs in the Linux

Kernel: A Qualitative Analysis. In Proceedings of the ACM/IEEE International
Conference on Automated Software Engineering (ASE). 421–432.

[2] M. Al-Hajjaji, S. Krieter, T. Thüm,M. Lochau, and G. Saake. 2016. IncLing: efficient
product-line testing using incremental pairwise sampling. ACM SIGPLAN Notices
52, 3 (2016), 144–155.

[3] D. Amalfitano, N. Amatucci, A. M. Memon, P. Tramontana, and A. R. Fasolino.
2017. A general framework for comparing automatic testing techniques of
Android mobile apps. Journal of Systems and Software (JSS) 125 (2017), 322–343.

[4] S. Apel, D. Batory, C. Kastner, and G. Saake. 2013. Feature-oriented software
product Lines. Springer Berlin / Heidelberg.

[5] S. Apel, S. Kolesnikov, N. Siegmund, C. Kästner, and B. Garvin. 2013. Explor-
ing Feature Interactions in the Wild: The New Feature-Interaction Challenge.
In Proceedings of the 5th International Workshop on Feature-Oriented Software
Development (FOSD). 1––8.

[6] Commons App. [n. d.]. Commons Issue 1735. https://github.com/commons-
app/apps-android-commons/issues/1735, Accessed 6-mar-2024.

[7] T. F. Bowen, F. S. Dworack, C. Chow, N. Griffeth, G. E. Herman, and Y-J Lin. 1989.
The feature interaction problem in telecommunications systems. In Proceedings
of the 7th International Conference on Software Engineering for Telecommunication
Switching Systems (SETSS). 59–62.

[8] M. B. Cohen, M. B. Dwyer, and J. Shi. 2007. Interaction Testing of Highly-
Configurable Systems in the Presence of Constraints. In Proceedings of the Inter-
national Symposium on Software Testing and Analysis (ISSTA). 129–139.

[9] C. Escobar-Velásquez, M. Linares-Vásquez, G. Bavota, M. Tufano, K. Moran, M.
Di Penta, C. Vendome, C. Bernal-Cárdenas, and D. Poshyvanyk. 2020. Enabling
Mutant Generation for Open- and Closed-Source Android Apps. IEEE Transactions
on Software Engineering (TSE) 48, 1 (2020), 186–208.

[10] F. Ferreira, G. Vale, J. P. Diniz, and E. Figueiredo. 2021. Evaluating T-wise testing
strategies in a community-wide dataset of configurable software systems. Journal
of Systems and Software (JSS) (2021), 110990.

[11] J. A. Galindo, H. Turner, D. Benavides, and J. White. 2016. Testing variability-
intensive systems using automated analysis: an application to Android. Software
Quality Journal 24 (2016), 365–405.

[12] Brady J. Garvin, Myra B. Cohen, and Matthew B. Dwyer. 2011. Evaluating
improvements to a meta-heuristic search for constrained interaction testing.
Empirical Software Engineering 16, 1 (2011), 61–102.

[13] Martin Fagereng Johansen, Øystein Haugen, and Franck Fleurey. 2011. Properties
of Realistic Feature Models Make Combinatorial Testing of Product Lines Feasible.
In International Conference on Model Driven Engineering Languages and Systems
(MODELS). 638–652.

[14] Martin Fagereng Johansen, ØysteinHaugen, Franck Fleurey, AnneGrete Eldegard,
and Torbjørn Syversen. 2012. Generating Better Partial Covering Arrays by
Modeling Weights on Sub-product Lines. In International Conference on Model
Driven Engineering Languages and Systems (MODELS). 269–284.

[15] M. C. Júnior, D. Amalfitano, L. Garcés, A. R. Fasolino, S. A Andrade, and M.
Delamaro. 2022. Dynamic Testing Techniques of Non-functional Requirements
in Mobile Apps: A Systematic Mapping Study. ACM Computing Surveys (CSUR)
54, 10s (2022), 1–38.

[16] P. Kong, L. Li, J. Gao, K. Liu, T. F. Bissyandé, and J. Klein. 2018. Automated testing
of Android apps: A systematic literature review. IEEE Transactions on Reliability
68, 1 (2018), 45–66.

[17] W. Lam, S. Winter, A. Astorga, V. Stodden, and D. Marinov. 2020. Understanding
reproducibility and characteristics of flaky tests through test reruns in Java
projects. In Proceedings of the IEEE International Symposium on Software Reliability
Engineering (ISSRE). 403–413.

[18] Hao Lin, Jiaxing Qiu, Hongyi Wang, Zhenhua Li, Liangyi Gong, Di Gao, Yunhao
Liu, Feng Qian, Zhao Zhang, Ping Yang, and Tianyin Xu. 2023. Virtual Device
Farms for Mobile App Testing at Scale: A Pursuit for Fidelity, Efficiency, and
Accessibility. In Proceedings of the Annual International Conference on Mobile
Computing and Networking. Article 45, 17 pages.

[19] Y. Lu, M. Pan, J. Zhai, T. Zhang, and X. Li. 2019. Preference-wise testing for An-
droid applications. In Proceedings of the ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE). 268–278.

[20] E. H. Marinho, F. Ferreira, J. P. Diniz, and E. Figueiredo. 2023. Evaluating testing
strategies for resource related failures in mobile applications. Software Quality
Journal (2023), 1–27.

[21] F. Medeiros, C. Kästner, M. Ribeiro, R. Gheyi, and S. Apel. 2016. A comparison of
10 sampling algorithms for configurable systems. In Proceedings of the IEEE/ACM
International Conference on Software Engineering (ICSE). IEEE, 643–654.

[22] O. Parry, G. M. Kapfhammer, M. Hilton, and P. McMinn. 2021. A Survey of Flaky
Tests. ACM Transactions on Software Engineering and Methodology (TOSEM) 31,
1, Article 17 (2021), 74 pages.

[23] S. Souto, M. d’Amorim, and R. Gheyi. 2017. Balancing soundness and efficiency
for practical testing of configurable systems. In 2017 IEEE/ACM 39th International
Conference on Software Engineering (ICSE). IEEE, 632–642.

[24] J. Sun, T. Su, J. Li, Z. Dong, G. Pu, T. Xie, and Z. Su. 2021. Understanding and
Finding System Setting-Related Defects in Android Apps. In Proceedings of the
International Symposium on Software Testing and Analysis (ISSTA). 204–215.

[25] T. Thüm, C. Kästner, F. Benduhn, J. Meinicke, G. Saake, and T. Leich. 2014. Fea-
tureIDE: An extensible framework for feature-oriented software development.
Science of Computer Programming 79 (2014), 70–85.

[26] Sergiy Vilkomir. 2018. Multi-device coverage testing of mobile applications.
Software Quality Journal (SQJ) 26, 2 (2018), 197–215.

[27] L. Wei, Y. Liu, S-C. Cheung, H. Huang, X. Lu, and X. Liu. 2020. Understanding
and Detecting Fragmentation-Induced Compatibility Issues for Android Apps.
IEEE Transactions on Software Engineering (TSE) 46, 11 (2020), 1176–1199.

A SCREENS
Figure 3 presents the first screen of RIFDiscoverer. This screen
shows fields to the selection of testing strategies (A) and a “T”

https://github.com/commons-app/apps-android-commons/issues/1735
https://github.com/commons-app/apps-android-commons/issues/1735

RIFDiscoverer: A Tool for Finding Resource Interaction Failures Conference’17, July 2017, Washington, DC, USA

parameter (B) depending on the selected strategy. A part of the
screen (C) presents a table of settings with markers for enabled and
disabled resources. Some strategies (Random and Custom) allow
direct manipulation of the settings.

Figure 3: Choice of Testing Strategies.

Figure 4 presents the second screen of RIFDiscoverer. This screen
allows changing some execution parameters: the folders of applica-
tion project and generated reports of Gradle verification task, the
number of executions for dealing with flaky tests, and the Gradle
task name related to the execution of the instrumented test suite.

Figure 4: Changing Execution Parameters.

Figure 5 presents the third screen of RIFDiscoverer. This screen
allows managing the execution of the instrumented test suite. A
part of the screen (A) is a terminal with output logs from test suite
executions. A button (B) loads the Genymotion emulator precon-
figured to the execution of instrumented code. Another button (C)
starts the execution of the test suite.

Figure 5: Running the Test Suite.

Figure 6 presents the third screen of RIFDiscoverer side by side
with the emulator. The screen presents a progress bar (A) and
buttons to abort the execution (B) and visualize the folder of the
test reports (C).

Figure 6: Running the Test Suite with Emulator Loaded.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Resource Interaction Failures
	2.2 Sampling Testing Strategies
	2.3 Related Work

	3 The RIFDiscoverer Tool
	3.1 Architecture
	3.2 Design and Implementation
	3.3 Test Instrumentation

	4 Preliminary Evaluation
	5 Conclusion
	References
	A Screens

