Bad Smell Detection using Google Gemini

Larisse Amorim, Ivandeclei Mendes da Costa, Leticia Alves, and Eduardo Figueiredo

{larisseamorim, ivandeclei, leticiasma}@ufmg.br, figueiredo@dcc.ufmg.br
Software Engineering Laboratory (LabSoft), Federal University of Minas Gerais (UFMG), Brazil

Abstract—The detection of code smells is a critical task in
software engineering, as it helps identify design issues that can
compromise code quality and maintainability. With the advance-
ment of large-scale language models (LLMs), such as Google
Gemini, there is an opportunity to automate this detection more
efficiently. This paper investigates the effectiveness of Gemini
in identifying code smells in Java projects. We used a dataset
(MLCQ) containing four types of code smells (Blob, Data Class,
Feature Envy, and Long Method), classified into three severity
levels. We then applied two types of prompts: a generic and a
detailed one. To evaluate Gemini, we proposed three research
questions related to its effectiveness with the different types of
prompts used. Our results show that Gemini is more likely to
provide correct results when using a detailed prompt compared
to a generic one. Additionally, Gemini identified some code smells
not highlighted by ChatGPT, suggesting their different detection
capabilities. However, the accuracy of these additional detections
still needs to be validated. We conclude that Google Gemini is a
promising tool for code smell detection, but further studies are
needed to understand its accuracy and the influence of the type
of prompt used. This work paves the way for future research on
the application of LLMs in software quality improvement.

Index Terms—Code Smells, ChatGPT, Google Gemini

I. INTRODUCTION

In recent years, Artificial Intelligence (AI) has seen remark-
able growth, especially in the areas of Natural Language Pro-
cessing (NLP), Machine Learning, and Computer Vision. This
growth has led to major changes in several areas, including
software engineering [26]. Looking at the Al recent advances,
Large Language Models (LLMs) are gaining great visibility,
as they have become a great ally in several areas of Software
Engineering, such as software requirements [4], [5], automated
test generation [5], and software vulnerability detection [7].

Inspired by a previous study [2], our goal is to explore the
use of LLMs to detect code smells [1]. In this work, we evalu-
ate the performance of the Google Gemini tool version 1.5 Pro
for detecting code smells in JAVA project code. To perform
this exploratory evaluation, we used an existing code smells
dataset, called MLCQ [8], which contains 14,739 instances
of code smells in GitHub repositories with four types: Blob
which is the problem when a class becomes excessively large
and complex, taking on multiple responsibilities that should
be handled in separate classes; Data Class which is when
a class mainly stores data without implementing significant
functionality; Feature Envy which is when a method of one
class excessively accesses the data or methods of another
class and Long Method, which is when a method or function

is excessively long and complex. Our aim is to answer the
following questions:
e RQ1: Can Google Gemini identify code smells using a
generic prompt?
e RQ2: Can Google Gemini identify code smells using a
detailed prompt?
e RQ3: How does the effectiveness of Google Gemini
differ between prompts?

Based on the responses we found, we analyze the efficiency
of Google Gemini in detecting bad smells (inspired by a
previous study on ChatGPT [2]). Our studies showed that
Google Gemini was able to identify code smells in both
prompts. When using the generic prompt, Gemini identified
other types of smells that were not listed in the dataset, such
as Duplicate Code, Lazy Class and Long Parameter List.

II. BACKGROUND

This section introduces key notion of concepts that are being
used in this work, namely Large Language Models (LLMs),
code smells and the MLCQ dataset.

A. Large Language Models (LLMs)

Large Language Models (LLMs) are neural networks with
the transformer architecture [3], pre-trained on massive textual
content corpora and specifically tailored for text completion.
Given textual inputs, for example, prompts, they generate
corresponding text outputs in a probabilistic manner.

B. Code Smells

Code smells are particular bad patterns in source code
which violate important principles of software design and
implementation issues [1]. Particularly, code smells indicate
when and what refactoring can be applied [6], [22]. This paper
investigates four types of code smells discussed below.

e Blob: Also called a “God Class”, it is a class that is
large and serves many different responsibilities, which
are actively used throughout the code base.

o Data Class: it defines a class that is just a container for
data, without any functionality.

o Feature Envy: this is a high severity smell [23] that
occurs when a method accesses the data of another class
more then its own data, relying more on members of other
classes than its own.

o Long Method: this smell occurs when a method or a
function is very long. This impacts the understandability
and testability of the code [28].

C. MLCQ Code Smell Samples

The Machine Learning Code Quality Corpus (MLCQC) [25]
is a dataset designed to address limitations found in previous
research on code smells in the context of machine learn-
ing. Unlike other datasets, it was built in collaboration with
professional software developers, ensuring greater relevance
and quality. In addition, it includes data on the professional
experience of the developers who participated in the review,
allowing for deeper analysis of the perception of code smells
in the industry [25].

MLCQ originally contains 14,739 code samples extracted
from contemporary open source Java projects, with detailed
information about four code smell type (Blob, Data Class,
Feature Envy, and Long Method), classificated into four-level
severity scales (None, Minor, Major, and Critical). Table I
presents the detailed dataset instances. We discarded 11,448
instances classified as None in the original dataset; for this
research, we analyzed the remaining 3,291 instances.

TABLE I
DATASET CONTENT

Severity Blob Data Class Feature Envy Long Method Total
Minor 535 510 288 454 1,787
Major 312 401 142 274 1,129
Critical 127 146 24 78 1375
Total 974 1,057 454 806 3,291

III. STUDY DESIGN

Figure 1 represents the data that we analyzed the code
smells from MLCQ Code Smell Samples [8] (see II-C) and
classified them into four severity levels: None, Minor, Major,
and Critical. For the analysis, we discarded records classified
as None, considering only the Minor, Major, and Critical
levels. The dataset showed the following distribution: 375
records at the Critical level, 1,129 at the Major level, and
1,787 at the Minor level.

Severity level of Code Smells

Number of Code Smells

Minor Major Critical

Severity Type

Fig. 1. Severity level of Code Smells found

A. Choosing Gemini

Figure 2 presents an overview of the study structure and
the data processing flow. To analyze the dataset, we chose
Gemini and use the prompts presented in the baseline study
[2]. However, since our goal is to perform a replication, we
decided to follow the same steps when modifying the LLM.

The reason for choosing Gemini is because it has a sig-
nificant advantage in delivering factual information by its
seamless integration with Google Search [9]. This integration
allows the model to take advantage of Google’s extensive
knowledge base, resulting in more accurate and informa-
tive answers [9]. In addition, Gemini can effectively cite
its sources, increasing the transparency and credibility of
the information provided [9]. Another feature of Gemini is
its advanced ability to understand complex instructions and
maintain context in lengthy conversations. However, there are
still small differences in the treatment of linguistic issues,
which can limit its performance in some contexts [9]. The
model also stands out for its Natural Language Processing
(NLP) capabilities. Based on the Transformer architecture,
introduced in 2017, Gemini relies on the attention mechanism
to improve contextual awareness and language comprehension
[9]. With its Retrieval-Augmented Generation (RAG) function-
ality, it combines information retrieval and text generation,
offering fact-based outputs in a highly efficient manner [9]. In
addition, Gemini has been trained on a diverse set of data and
benefits from Google’s scalable infrastructure [9]. This makes
it versatile in a variety of tasks, including generating code and
factual answers [9].

Despite its advantages, Gemini faces challenges related to
biases inherent in the training data [9]. Although Google
prioritizes bias mitigation and follows the “do no harm”
principle, these problems still persist, reflecting the human
biases in the real world data [9]. Another point of attention is
the risk of the model producing biased or offensive content,
even with efforts to ensure safety and to avoid harm [9].
This highlights the limitations of language models, even the
most advanced ones like Gemini. While Gemini excels at
producing accurate responses, especially when using the RAG
functionality, it can occasionally generate problematic content
due to the nature of its knowledge base [9].

B. Data Processing

We developed a .NET script to process the dataset in an
automated manner, ensuring efficiency in the collection and
analysis of information (Step 2 in Figure 2). The process
begins by reading the dataset, where each line contains in-
formation about a specific source code associated with a
code smell. For each entry, the script extracts the address
of the repository on GitHub and accesses the corresponding
source code. It then identifies and copies the code, where it
contains the code smell. With this data in hand, the script
combines the code with the prompt of the base study, creating
standardized entries for analysis. After this step, the system
sends the data to Gemini, which performs the analysis and
generates a response based on the criteria established in the
prompts. Finally, the script stores all responses in a CSV file,
facilitating the organization and subsequent analysis of the
results obtained.

Y— /’—» E—»—»%—»E—» ih,

Filter dataset Search for
information on

GitHub

Create an algorithm
to read the dataset

Merge generic or
specific prompt with
GitHub content

Prompt Gemini Save outputs ina CSV Data analysis

Fig. 2. Steps ou our study

C. Used Prompts and Data Analysis

Table II shows the two types of prompts used in this study
[2]: generic and detailed. The main difference between them is
that, in the generic prompt, the LLM is instructed to identify
code smells in the code provided, without specifying which
ones should be found. In the detailed prompt, the code smells
to be identified are clearly defined.

TABLE I
USED PROMPTS DESCRIPTION

Prompt Type

Description

I need to check if the Java code below contains code smells
(aka bad smells). Could you please identify which smells
occur in the following code? However, do not describe the
smells, just list them. Please start your answer with “YES I
found bad smells” when you find any bad smell. Otherwise,
start your answer with “NO, I did not find any bad smell”.
When you start to list the detected bad smells, always put
in your answer “the bad smells are:” amongst the text of
your answer and always separate it in this format: 1. Long
method, 2. Feature envy

[Java source code with the smell]

Generic Prompt

Detailed Prompt The list below presents common code smells (aka bad
smells). I need to check if the Java code provided at the

end of the input contains at least one of them.

e Blob

e Data Class

o Feature Envy
o Long Method

Could you please identify which smells occur in the follow-
ing code? However, do not describe the smells, just list them.
Please start your answer with “YES I found bad smells”
when you find any bad smell. Otherwise, start your answer
with “NO, I did not find any bad smell”. When you start
to list the detected bad smells, always put in your answer
“the bad smells are:” amongst the text of your answer and
always separate it in this format: 1. Long method, 2. Feature
envy ... [Java source code with the smell]

To analyze the data that was saved in the CSV file, consid-
ering the number of records that needed to be analyzed, we
developed a .Net script that summed the number of code smells
returned in each prompt. In the case of the generic prompt,
Gemini often returned a variety of code smells and sometimes
changed the output format. To deal with these inconsistencies,
we configured the script to remove parts that were irrelevant
to the analysis, such as explanations related to the meanings
of the code smells found by Gemini.

IV. ANALYSIS AND DISCUSSION

In this section, we present the analysis and discussion of the
results found after executing the steps described in Section III.

Section IV-A shows the efficiency of the script used for each
prompt described in Table II. In Sections IV-B, IV-C, IV-D),
we discuss each proposed research question.

A. Generic Prompt vs. Detailed Prompt

After running the script to read the dataset (see section
III-B), we found that many repositories were unavailable. In
addition, there was variation in the results related to processing
errors, which may have been caused by various factors, such
as failures in the GitHub service, the script being unable to
open the page, or the unavailability of the Gemini service.

Figure 3 shows the difference between the prompts used. In
the case of the generic prompt, Gemini indicated that, of the
codes submitted, 111 had no code smells and recorded 428
processing errors. For the detailed prompt, Gemini reported
that 262 code snippets did not have the defined code smells,
while 381 errors occurred during script processing.

Specific Prompt vs. Generic Prompt
Specific Prompt [l Generic Prompt

500
400
300
200
} .

0

Errors No code smells

Number of results

Fig. 3. Data processing

B. RQI: Can Google Gemini identify code smells using a
generic prompt?

After analyzing the data, we observed that Gemini, when
using a generic prompt, was able to detect not only the code
smells already catalogued (i.e., Data Class, Blob, Feature
Envy, and Long Method), but also additional types of code
smells such as Long Parameter List and Shotgun Surgery (see
Table III). This suggests that the generic prompt enabled a
broader and possibly deeper analysis of each code segment,
often revealing multiple smells in a single code sample [6].

The possible discrepancy between Table III and Table III
can be partially explained by this behavior. While Table III
reflects all detections using the generic prompt, Table IV

presents results filtered by specific prompts, which may have
missed additional smells or were less sensitive to overlaps.
Another possibility is that some false positives occurred in
the generic prompt detections, although our analysis suggests
that most additional smells were valid.

At this stage, it is not yet possible to determine with preci-
sion why certain code segments labeled with a specific smell
were also flagged with others. Further investigation is needed
to clarify whether these are genuine overlaps or limitations in
the classification process. Nevertheless, the findings indicate
that Gemini is capable of identifying a wide range of code
smells, even when prompted generically.

TABLE IIT
NUMBER OF CODE SMELLS FOUND FOR THE GENERIC PROMPT

Code Smell ‘ Total
Long Method 2496
Large Class 2117
God Class 1497
Data Class 1354
Long Parameter List 1179
Shotgun Surgery 837
Feature Envy 735
Primitive Obsession 524
Switch Statements 500
Duplicate Code 390
Refused Bequest 262
Lazy Class 119
Magic Number 68
Duplicated Code 55
Nested Blocks 37
Complex Method 34
Conditional Complexity 32
Nested Conditional 31
Nested Block Depth 24
Lazy Initialization 19
Message Chain 19
Middle Man 16
Inappropriate Intimacy 13
Nested Class 13

C. RQ2: Can Google Gemini identify code smells using a
detailed prompt?

Table IV presents the number of bad smells detected in
the detailed prompt by using Google Gemini. It shows that
Gemini identified 188 classes containing the Blob smell, 415
classes containing the Data Class smell, 64 classes containing
the Feature Envy smell and 2482 classes containing the Long
Method smell. However, out of the 3291 classes contained
in the dataset, Gemini was able to evaluate 3149 classes,
corresponding to 95.68%. The reasons for not detecting code
smells in the remaining about 5% of the data are due to one of
two factors: 1) Gemini did not find any smells in the analyzed
classes or 2) The script used to automate the process presented
an error during execution and, thus, it skipped some classes.

D. RQ3: How does the effectiveness of Google Gemini differ
between prompts?

When a generic prompt was used, in addition to the code
smells listed in the dataset, Gemini was able to find other types
of smells, as showed on Table III. However, there is a need

TABLE IV
BAD SMELLS DETECTED IN DETAILED PROMPT

Smell Total (%)
Blob 188 5.71
Data Class 415 12.61
Feature Envy 64 1.94
Long Method 2482 75.42
Total 3149 95.68

to analyze the data to validate if the additional smells found
are, in fact, smells present in the code.

Using a detailed prompt, Gemini correctly identified all the
smells specified in the prompt based on the smells present in
each instance in the database. Therefore, we recommend using
Gemini with a detailed prompt where you can list the code
smells of interest to check for their presence, since Gemini has
shown satisfactory results for the instances it has analyzed. If
you do not want to list the code smells of interest, you can use
Gemini to list the code smells it identifies as being present in
your code, but you will need prior knowledge and analysis to
ensure that the answer provided by Gemini is correct.

V. THREATS TO VALIDITY

It is essential to recognize the limitations and potential
threads of the study when interpreting the results. In this study,
we found four validity topics that should be analyzed:

Internal Validity: During data analysis, processing errors
were found that may have affected the results. The root
cause of these errors could be failures in the GitHub service,
problems accessing pages or unavailability of the Gemini
service. The lack of control over these factors may have
introduced biases into the data analyses.

Construction Quality: The dataset used contains code
smells classified into three severity levels. However, the defi-
nition and classification of code smells can be subjective and
vary between different developers. This may have influenced
the accuracy of Google Gemini’s detection of code smells.

External Validity: The study used a dataset with a limited
number of code smells and focused on the Java programming
language. The evaluation of Google Gemini on a larger and
more diverse dataset is necessary to confirm the generaliz-
ability of the results. In addition, two prompt strategies were
investigated, varying according to the level of detail. Other
prompts could be evaluated in future work.

Conclusion Validity: An important question here is whether
or not all (or most) of the smells found by Gemini are actually
present in the code. If so, then one conclusion is that the
generic prompt is more effective than the detailed one. If not,
then the generic prompt actually opens the door for Gemini
to find problems that do not actually exist.

VI. RELATED WORK

Large Language Models (LLMs) are Deep Learning-based
systems designed to perform tasks related to Natural Language

Processing (NLP) [11] [12]. In the field of Software Engineer-
ing, researchers have explored the potential of LLMs to assist
in various activities, such as automatic code completion [24],
test case generation [13] [14], and code translation [12]. For
instance, Liu et al. [11] proposed a pre-trained language model
optimized for code completion, which outperformed state-
of-the-art tools in Java and TypeScript programs. Similarly,
Siddiq et al. [14] explored the use of LLMs for generating
unit tests, achieving higher compilation success rates through
heuristic-based prompts. While these studies demonstrate the
versatility of LLMs in software engineering tasks, our work
focuses specifically on their application in detecting code
smells, an area that has received less attention in the liter-
ature. Unlike previous studies, we evaluate the effectiveness
of Google Gemini in identifying code smells, exploring the
impact of different prompt strategies.

This research differs from previous studies by using the
same prompt applied in another study, with the aim of
analyzing the behavior of Gemini. The preliminary analysis
demonstrated that the model is capable of identifying code
smells, which opens space for future comparisons with other
LLMs. Furthermore, the results obtained allow us to inves-
tigate, strategies for the formulation of reusable prompts in
different LLMs.

Pre-trained models have been widely used for code-related
tasks, such as code review automation and program repair.
Tufano et al. [17] evaluated the effectiveness of T5-based
models in automating code reviews, demonstrating superior
performance over traditional Deep Learning models. Zhang
et al. [19] investigated the use of pre-trained models, such
as BART, for generating summaries of pull request titles in
GitHub projects, achieving high accuracy. Mastropaolo et al.
[18] explored the use of transfer learning for code-related
tasks, highlighting the adaptability of pre-trained models
across different programming contexts. These studies highlight
the potential of pre-trained models in improving code quality
and understanding. However, they primarily focus on tasks like
code review and summarization, leaving a gap in the explo-
ration of code smell detection. Our study complements these
works by applying pre-trained models, specifically Google
Gemini, to the task of identifying code smells, providing
insights into their effectiveness in this domain.

Prompt engineering has emerged as a key technique for
optimizing the performance of LLMs in software engineering
tasks. Shin et al. [12] analyzed different prompt engineering
approaches for tasks, such as code generation and translation,
finding that conversation-structured prompts yielded the best
results. Similarly, White et al. [21] applied prompt design
strategies to tasks like requirements elicitation and testing,
demonstrating the importance of well-crafted prompts in
achieving accurate outputs. Liu et al. [16] conducted a system-
atic survey of prompting methods in NLP, emphasizing the role
of prompt engineering in enhancing model performance. While
these studies focus on general software engineering tasks, our
work specifically investigates the role of prompt engineering in
code smell detection. We compare the effectiveness of generic

and detailed prompts in guiding Google Gemini to identify
code smells, contributing to the understanding of how prompt
design influences the performance of LLMs in this context.

Recent studies have begun to explore the use of LLMs
for code smell detection. For example, Alshahwan et al. [13]
developed a tool based on LLMs to improve human-written
tests, achieving a 73% acceptance rate for suggestions. Imai
[20] evaluated GitHub Copilot’s performance in collaborative
programming, noting its ability to generate code but also
highlighting quality concerns. Rane et al. [15] compared
the capabilities of Google Gemini and ChatGPT, providing
insights into their strengths and limitations in various tasks,
including code analysis. While these studies demonstrate the
potential of LLMs in improving code quality, they do not
specifically address code smell detection. Our work builds on
these foundations by evaluating Google Gemini’s ability to
detect code smells in Java projects, and exploring the impact of
different prompt strategies. This focus on code smell detection
fills a gap in the literature and provides new insights into the
application of LLMs for software quality improvement.

Nunes et al. [10] evaluated the effectiveness of LLMs,
specifically Copilot Chat and Llama 3.1, in fixing main-
tainability issues in real-world Java projects. Their study
employed zero-shot and few-shot prompting techniques, find-
ing that Llama with few-shot prompting successfully fixed
44.9% of the methods, while Copilot Chat and Llama zero-
shot fixed 32.29% and 30%, respectively. However, the study
also highlighted that most solutions introduced errors or
new maintainability issues, emphasizing the need for human
oversight. This work aligns with our research by providing
empirical evidence of the challenges and potential of LLMs
in addressing maintainability issues. While Nunes et al. [10]
focus on fixing maintainability issues, our study extends this
by specifically targeting code smell detection, providing a
complementary perspective on the capabilities and limitations
of LLMs in software maintenance tasks.

Our study is inspired by the work of Silva et al. [2],
which investigated the use of ChatGPT for detecting code
smells. While their study provided initial insights into the
capabilities of LLMs for this task, our work extends their
findings by evaluating Google Gemini, a more recent and
advanced model. By replicating their methodology, we aim
to provide a deeper understanding of how different LLMs
perform in code smell detection and how prompt strategies
influence their effectiveness. This replication and extension
contribute to the growing body of research on the application
of LLMs in software engineering.

VII. CONCLUSION AND FUTURE WORK

This study explored Google Gemini’s ability to detect code
smells in Java projects in a dataset containing four types of
smells: Blob, Data Class, Feature Envy, and Long Method.
The results indicated that Gemini, using generic and detailed
prompts, can identify the evaluated code smells, even detecting
smells previously unidentified in the original dataset (which
may or may not be a false positive). The study suggests that

Gemini could be a promising tool for helping developers iden-
tify code problems, paving the way for future research into the
optimization and application of the model in different software
development contexts. However, further research is still needed
to determine Gemini’s accuracy in detecting code smells and
the influence of the type of prompts on its performance.

As part of future work, we propose a more in-depth analysis
of Gemini’s calibration, since for this research we used the
model’s default settings. We intend to explore different con-
figuration parameters, assessing whether specific adjustments
can have a positive impact on the results, both in terms of
the accuracy and consistency of code smells detections. This
research will include systematic experiments to identify the
ideal calibration for the types of analysis carried out, based
on metrics, such as the number of correctly identified code
smells and the reduction in processing errors.

Another point to be investigated is why Gemini detected
additional code smells that were not cataloged in the original
dataset. We plan to conduct a detailed manual review of the
dataset used, with a view to identifying possible flaws or
gaps in the initial catalog of code smells. This may include a
manual and semi-automatic re-analysis of the code contained
in the repositories to check whether these additional problems
detected by Gemini really reflect previously overlooked code
smells or whether they stem from errors in the model.

In addition, we propose to investigate Gemini’s accuracy in
categorizing code smells using detailed prompts. This study
would compare the results obtained between generic and
detailed prompts, identifying how the structure of the prompt
influences the model’s ability to detect and classify code smells
with greater accuracy. We also intend to calculate the precision
and recall rate for the different types of prompts, enabling a
more robust quantitative assessment of Gemini’s effectiveness
in these scenarios. Finally, we aim to further evaluate Gemini’s
effectiveness in other datasets of code smells, in order to verify
the generalizability of the results. This will make it possible
not only to validate the findings of this study, but also to
understand how the model behaves in the face of code from
a variety of contexts and development styles.

Acknowledgements. This research was partially supported
by Brazilian funding agencies: CNPq (Grant 312920/2021-0),
CAPES, and FAPEMIG (Grant APQ-01488-24).

REFERENCES

[1] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[2] L. Silva, J. Silva, J. Montandon, M. Andrade, and M. T. Valente, “De-
tecting Code Smells using ChatGPT: Initial Insights”. Int’l Symposium
on Empirical Software Engineering and Measurement (ESEM), 2024.

[3] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is All you Need. In Advances
in Neural Information Processing Systems”, vol. 30, Curran Associates.

[4] K. Papapanos and J. Pfeifer, “A Literature Review on the Impact
of Artificial Intelligence in Requirements Elicigtation and Analysis”,
Department of Computer and Systems Sciences Master level, 2023.

[5] K. Ahmada, M. Abdelrazeka, C. Arorac, M. Banob, J. Grundyc,
“Requirements Practices and Gaps When Engeneering Human-Centered
Artificial Intelligence Systems”, Elsevier Science Publishers, 2023.

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

A. Santana, E. Figueiredo and J. Pereira, “Unraveling the Impact of Code
Smell Agglomerations on Code Stability,” International Conference on
Software Maintenance and Evolution (ICSME), 2024.

Pooja S, Chandrakala C. B. and L. K Raju, “Developer’s Roadmap
to Design Software Vulnerability Detection Model Using Different Al
Approaches,” IEEE Access, vol. 10, pp. 75637-75656, 2022.

L. Madeyski and T. Lewowski, “MLCQ: Industry-Relevant Code Smell
Data Set”,Proceedings of the 24th International Conference on Evalua-
tion and Assessment in Software Engineering, 2020.

N. Rane et al., “Gemini Versus ChatGPT: Applications, Performance,
Architecture, Capabilities, and Implementation”, 2024.

H. Nunes, E. Figueiredo, L. Rocha, S. Nadi, F. Ferreira, and G. Santos,
“Evaluating the Effectiveness of LLMs in Fixing Maintainability Issues
in Real-World Projects”. International Conference on Software Analysis,
Evolution and Reengineering (SANER), 2025.

F. Liu, G. Li, Y. Zhao, and Z. Jin, “Multi-task Learning based Pre-trained
Language Model for Code Completion”, 35th IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2020.

J. Shin, C. Tang, T. Mohati, M. Nayebi, S. Wang, and H. Hemmati,
“Prompt Engineering or Fine Tuning: An Empirical Assessment of Large
Language Models in Automated Software Engineering Tasks”, 2023.
N. Alshahwan, J. Chheda, A. Finegenova, B. Gokkaya, M. Harman,
I. Harper, A. Marginean, S. Sengupta, and E. Wang, “Automated Unit
Test Improvement using Large Language Models at Meta”, International
Conference on the Foundations of Software Engineering (FSE), 2024.
M. Siddiq, J. Santos, R. Tanvir, N. Ulfat, F. Rifat, and V. Lopes, “Using
Large Language Models to Generate JUnit Tests: An Empirical Study”,
Int’l Conf. on Evaluation and Assessment in Soft. Engineering, 2024.
A. Mastropaolo, N. Cooper, D. Palacio, S. Scalabrino, D. Poshyvanyk,
R. Oliveto, and G. Bavota, “Using Transfer Learning for Code-Related
Tasks”, IEEE Transactions on Software Engineering, 2022.

P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, ‘“Pre-train,
Prompt, and Predict: A Systematic Survey of Prompting Methods in
Natural Language Processing”, 2021.

R. Tufano, S. Masiero, A. Mastropaolo, L. Pascarella, D. Poshyvanyk,
and G. Bavota, “Using Pre-Trained Models to Boost Code Review
Automation”, International Conference on Software Engineering (ICSE),
pp. 2291-2302, 2022.

R. Tufano, L. Pascarella, M. Tufano, D. Poshyvanyk, and G. Bavota,
“Towards Automating Code Review Activities”, International Confer-
ence on Software Engineering (ICSE), 2021.

T. Zhang, 1. Irsan, F. Thung, D. Han, D. Lo, and L. Jiang, “Automatic
Pull Request Title Generation”, International Conference on Software
Maintenance and Evolution (ICSME), 2022.

S. Imai, “Is GitHub Copilot a Substitute for Human Pair-programming?
An Empirical Study”, International Conference on Software Engineering
(ICSE-Companion), 2022.

J. White, S. Hays, Q. Fu, J. Spencer-Smith, and D. Schmidt, “ChatGPT
Prompt Patterns for Improving Code Quality, Refactoring, Requirements
Elicitation, and Software Design”, 2023.

E. Fernandes, J. Oliveira, G. Vale, T. Paiva, and E. Figueiredo, “A
review-based comparative study of bad smell detection tools,” Interna-
tional Conference on Evaluation and Assessment in Software Engineer-
ing (EASE), 2016.

F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, and A. De Lucia, “Do
They Really Smell Bad? A Study on Developers’ Perception of Bad
Code Smells”, IEEE International Conference on Software Maintenance
and Evolution (ICSME), 2014.

M. Chen, J. Tworek, H. Jun, et al., “Evaluating Large Language Models
Trained on Code”, 2021.

L. Madeyski and T. Lewowski. “MLCQ: Industry-Relevant Code Smell
Data Set”, Proceedings of the 24th International Conference on Evalua-
tion and Assessment in Software Engineering (EASE), 342-347, 2020.
D. Cruz, A. Santana, and E. Figueiredo, “Detecting bad smells with ma-
chine learning algorithms: An empirical study,” International Conference
on Technical Debt (TechDebt), 2020.

C. Zhifei, C; Lin, M. Wanwangying, Z. Xiaoyu, Z. Yuming, and
X. Baowen, “Understanding metric-based detectable smells in python
software: A comparative study”, Information and Software Technology,
vol. 94, pp. 14-29, 2018.

N. Cardozo, I. Dusparic, and C. Cabrera, “Prevalence of Code Smells
in Reinforcement Learning Projects”, International Conference on Al
Engineering (CAIN), 37-42, 2023.

