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Abstract—Despite the existence of traditional refactoring tools
that offer semi-automated assistance, machine learning-based
models have shown significant potential to generate refactored
code. A comprehensive, manually validated refactoring dataset
could help the software engineering community to train such
models for effective refactorings. However, the community lacks
a manually validated refactoring dataset. This paper introduces
the MaRV dataset containing 693 manually evaluated code pairs
extracted out of 126 GitHub Java repositories, representing four
types of refactoring. In addition, the metadata describing the
supposedly refactored elements was collected. Each code pair
was manually evaluated by two reviewers out of 40 partici-
pants. MaRV dataset is constantly evolving with a web-based
tool available for evaluating refactoring representations. The
potential application of this dataset is to improve the accuracy
and reliability of state-of-the-art models in refactoring tasks
(e.g., refactoring candidate identification and refactoring code
generation) by providing high-quality data.

Index Terms—refactoring, dataset, manually validated, foun-
dation models

I. INTRODUCTION

Refactoring is an essential software development activity
to reduce complexity and improve maintainability of source
code, without affecting its behavior [1, 2]. Refactorings are
commonly employed to remove code smells and to address
technical debt. Researchers have explored various aspects
related to refactoring including cataloging of refactoring tech-
niques [3], refactoring candidate identification [4, 5], tools to
automatically refactor code [6, 7], and measure the impact of
refactoring on software maintainability [8, 9].

Conducting refactoring manually is costly and slow, while
automated tools, although useful, are at-best semi-automated
and often produce inaccuracies requiring human evaluation to
ensure correctness [10]. The arrival of state-of-the-art artifi-
cial intelligence models (e.g., large language models (LLMs),
or more generally, foundation models), has enabled a new
approach to solve software engineering problems, including
code refactoring by using prompting the model. Such models
tend to perform better when prompted with some examples
(also referred as few-shot learning [11]). However, current
LLM-based approaches exhibit limitations such as introducing
new errors and unintended behaviors [12, 13, 14]. One way to
improve the efficacy of these models is to provide high-quality
refactoring samples. Tools such as RefactoringMiner [15]
provides a foundation to build these datasets; however, au-
tomatically collected datasets are subject to ambiguities and
are prone to false positives that may adversely affect model
training [16, 17]. Existing studies have used such tools to

create refactoring datasets without evaluating the quality of
the tool output [18, 19].

In this study, we create and propose Manually Validated
Refactoring (MaRV) dataset, containing code snippets be-
fore and after a change, along with metadata such as man-
ually annotated refactoring techniques, affected code ele-
ments, and commit details. To prepare this dataset, we use
RefactoringMiner to identify applied refactorings from 126
popular Java repositories from GITHUB. We focus on four
refactoring techniques (i.e., rename method, rename variable,
extract method, and rename parameter) to strike a balance
between covering a variety of refactoring techniques, ensuring
a significant number of annotations, and keeping the manual
effort manageable. The initial set of identified refactorings is
shown to the human reviewers with the help of a web-based
tool that we developed to annotate each code pair with the
presence or absence of refactoring. We invited researchers,
developers, and students by email to contribute to the dataset.
At the time of writing this paper, 40 reviewers have evaluated
693 pairs of code. Each code pair is evaluated by two
reviewers. We provide the dataset in the form of JSON file.

Unlike other datasets [18, 19], our work consists of code
diffs capturing manually evaluated refactoring techniques. Our
approach aims to reduce noise and improve data quality in
refactoring datasets. Furthermore, we attempt to specify vari-
ous design choices (including selection criteria or repositories
and refactoring techniques), provide the used scripts and tools
to ensure replicability and extendibility.

The contributions of this work are:
1) A manually validated refactoring dataset comprising 693

pairs of code snippets across four refactoring techniques,
each manually evaluated by two reviewers.

2) A web-based tool designed to support easy manual vali-
dation of refactorings. The tool is open-source and pro-
vided in replication package allowing other researchers
to extend this or create new similar datasets.

3) Raw output generated by RefactoringMiner for 126 repos-
itories, each with more than 10, 000 commits, and the
scripts to extract snippets of various refactoring tech-
niques using the RefactoringMiner and git metadata.

Replication package. The scripts and datasets are available
online [20].

II. DATASET CONSTRUCTION

Figure 1 shows the study design to create MaRV dataset.
We describe each step in the following sections.
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Fig. 1. Steps to create MaRV dataset.

A. Datasource

Repository selection: This is step 1 of our study design. We
use the SEART GITHUB search [21] to select relevant reposi-
tories from GITHUB. We specify criteria to select repositories
that are active, popular, and community-driven Java projects.
Specifically, the criteria to select the repositories are (1) the
programming language of the repository is Java — because it
is one of the most used languages on GITHUB1, (2) at least 10
contributors, (3) a large number of commits (at least 10, 000)
[19], (4) at least 1, 000 stars [22]; and (5) at least one update
in the last twelve months2. With these criteria, we identify 172
repositories.

We use RefactoringMiner [15] (version 3.0.7) to identify
refactoring techniques applied in the selected repositories.
We cloned each repository locally and analyzed them using
RefactoringMiner on the default branch (i.e., main or master).
RefactoringMiner generates a JSON file for each analyzed
project. We successfully analyzed 126 repositories. We classify
the 46 failed analyses into three categories: (1) clone error: 17
cases where our scripts were unable to clone the repositories
automatically, (2) RefactoringMiner execution error: 16 cases
where RefactoringMiner stopped due to tool-related errors and,
(3) commit analysis hang: 13 cases where RefactoringMiner
stalled for more than 6 hours on a specific commit, leading us
to terminate its execution.

Despite the 26.74% failure rate, the 126 successfully mined
repositories were sufficient to identify over 9 million refactor-
ings across 102 different techniques.
Refactoring technique selection: This is step 2 of our study
design. RefactoringMiner identifies 102 different refactoring
techniques. We applied a filter to focus on a subset of it. We
first obtained a distribution of refactoring techniques applied
in a set of repositories. We selected the refactoring techniques
in the top upper quartile (i.e., in the top 75%). In addition, we
selected only the method-level language agnostic traditional
refactorings applied in Java and defined by Fowler [3].

With this selection criteria, we selected the following
refactorings with their occurrence frequency: change pa-
rameter type (563, 098), add parameter (482, 769), rename
method (405, 217), rename variable (303, 547), extract method
(285, 153), rename parameter (282, 396), and remove param-
eter (258, 453). Considering refactorings that researchers and
programmers are frequently using [23, 24, 25], we focus on

1https://octoverse.github.com/2022/top-programming-languages
2September 2023 to September 2024.

four refactoring techniques for this study: rename method,
rename variable, extract method, and remove parameter.

B. Data gathering

This is step 3 of our study design. We created and used
our diff.py script to parse the analysis reports generated
by RefactoringMiner. The scripts filter refactoring techniques
of the four selected types. We used the commit SHA and
file path information for each refactoring instance to assess
the code diff, extracting snippets before and after the commit
for each identified refactoring. We identified added, modified,
and deleted lines and stored this information. Furthermore,
for each refactoring, we extracted additional metadata: (1)
repository owner account and name, (2) refactoring technique,
(3) affected source code elements by the refactoring (e.g.,
method names, variables, parameters), (4) commit SHA, and
(5) refactored file path.

Keeping extensibility in mind, our script processes one
refactoring technique at a time, that can be specified as
an input parameter. The command python3 diff.py
’Extract Method’ illustrates the execution of our script
in a command prompt to perform the data gathering step
for extract method. This allows researchers to use our script
for specific refactoring techniques and add support to other
refactoring techniques. The script creates a directory for each
repository and subdirectories named with the commit SHA
within it. Each commit could have one or more refactorings.
The script generates three files for each refactoring:

1) original_refactor<counter>.java: snippet
before the change.

2) refactored_refactor<counter>.java: snip-
pet after the change.

3) metadata_refactor<counter>.txt:
refactoring metadata.

We used our filter_snippets.py script to generate
an SQL file that links the paths of the ‘before’ and ‘after’
snippets along with their metadata. Three filters are applied
during parsing: (1) snippets with at least 100 lines (considering
their suitability for manual evaluation), (2) code pairs with
non-empty files, and, (3) pairs of snippets with at least one
method declaration. This SQL file is used to populate the
database that feeds the manual validation tool.

C. Refactoring validation

This is step 4 of our study design. We developed a Web
tool for manual validation and classification of the identified
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Fig. 2. Example of refactoring manual evaluation screen.

snippets in the previous step (Section II-B). The tool is
built using PHP and MYSQL and is hosted with a publicly
accessible URL. Due to double-blind review guidelines, we do
not list the URL in this version of the paper. We provide the
source code of the Web tool in our replication package.

When a reviewer (of the snippets) accesses the tool, the
first page collects demographic information including their
expertise in software development, Java, and refactoring as
well as email and optionally name. After this registration, a
reviewer can proceed with evaluations of refactorings.

Figure 2 shows an example of a refactoring evaluation page.
At the top A , it displays the refactoring metadata, provided
by RefactoringMiner: (1) a description of the refactoring tech-
nique and affected elements, (2) a link to the commit webpage
associated with the refactoring, and (3) the file path where
the refactoring was applied. In the main panel, two blocks of
code are presented: on the left side B , the snippet before the
change, and on the right side C , the snippet after the change.
Removed and added lines are highlighted in red and green,
respectively. Each snippet box includes a View button D that
allows the whole file to be displayed in full-screen mode. At
the bottom E , there is the question “In your opinion, do these
code pairs represent the [refactoring technique]?” followed
by three options: Agree, Disagree, and I don’t know. When a
reviewer selects an answer, the corresponding label is recorded
in the database, and a new random pair of code snippets is
shown to the reviewer. There is no limit to the number of
reviews each participant (verified by email) can evaluate, but
our analysis indicates that no reviewer is responsible alone for
more than 15% of the total evaluations. The tool ensures that
two distinct reviewers evaluate each code pair. Additionally,
the tool monitors the number of responses for each refactoring
technique to maintain a balanced distribution: Extract Method

(172), Remove Parameter (174), Rename Method (173), and
Rename Variable (174).

We invited researchers, developers, and students by email
to participate in our manual validation. The message we
sent provides detailed explanations on participating in the
evaluation and an email address to clarify any doubts. Overall,
40 participants evaluated 693 refactorings — we exclude five
refactorings that were evaluated exclusively by one participant.

Table I shows the votes distribution. Consensus votes com-
bine cases in which both reviewers agree [agree, agree] or
disagree [disagree, disagree] with refactoring. A total of 321
(46, 32%) refactorings are considered true positive by both
reviewers and 84 (12, 12%) are considered false positive,
totaling 405 (58, 44%) votes. Conflict votes are the cases
in which reviewers vote differently, totaling 285 (41, 12%)
refactorings — [disagree, agree] (31, 31%), [I don’t know,
disagree] (3, 89%), [I don’t know, agree] (5, 91%). For only 3
(0, 43%) refactorings both reviewers answered ’I don’t know’.

D. Data storage

This is step 5 of our study design. Our data are stored in the
replication package. The dataset is provided as MaRV.json.
The snippets are provided as follows:

• Extract_Method.tar.gz
• Remove_Parameter.tar.gz
• Rename_Method.tar.gz
• Rename_Variable.tar.gz

Furthermore, RefactoringMiner outputs are available online3.

III. POTENTIAL RESEARCH APPLICATIONS

A manually validated refactoring dataset has several poten-
tial research applications. We list some of them below.

3https://zenodo.org/records/14395034
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TABLE I
CHARACTERISTICS OF THE COLLECTED ANNOTATIONS

Votes Count Total

Consensus [disagree, disagree] 84 405[agree, agree] 321

Conflict
[disagree, agree] 217

285[I don’t know, disagree] 27
[I don’t know, agree] 41

Other [I don’t know, I don’t know] 3 3

Total 693

Refactoring identification benchmark: Refactoring iden-
tification tools aim to spot introduced refactorings in a commit
(such as RefactoringMiner). The proposed dataset can be used
to validate such tools with the help of manually validated
refactorings in code snippets.

Refactoring candidate identification: The MaRV dataset
can be used as a source for training models to detect refac-
toring candidates. By providing manually evaluated examples,
MaRV allows the improvement of models to identify refactor-
ing candidates with greater precision.

Refactored code generation: Models trained on MaRV
can improve the quality of refactored code generation. Real
examples of code before and after refactoring can improve
the models capability to automatically apply program trans-
formations while preserving the code behavior.

IV. RELATED DATASETS

Manually validated datasets. Hegedus et al. [26] used a man-
ually validated dataset to evaluate software maintainability.
The study used software metrics and the relative maintain-
ability index (RMI) on 145 true-positive refactoring diffs out of
627 manually evaluated snippets, comparing these metrics with
a non-validated dataset. The non-validated dataset identified
2–4 metrics strongly associated with refactorings, while the
validated dataset proved more reliable, identifying 3–6 such
metrics. Nandani et al. [16] proposed a manually annotated
code smells dataset constructed from ten Java repositories.
The study first identify metrics thresholds for code smells
with the help of 110 participants. The participants used a
web-based tool and provided 17, 869 annotations to classify
snippets between smelly and benign. Subsequently, the study
used 82 participants to classify 5, 192 samples that are deemed
subjective based on the derived metric thresholds in first
phase of their study. Madeyski and Lewowski [17] created a
dataset of four types of code smells extracted from GITHUB
repositories with industrial relevance. Twenty-six developers
from a company used a non-public visual tool to evaluate
4, 770 code samples from 523 Java projects. The dataset
includes the file path, the link to the sample, the smell type
along with its severity.
Refactoring datasets. Aniche et al. [18] collected metrics
to use as features for evaluating the performance of six
machine learning algorithms in predicting opportunities for
20 techniques of refactoring. The dataset contains Java classes
that are not validated for the presence of refactorings. Li and

Zhang [19] proposed RefT5, an approach to detect five tech-
niques of refactoring opportunities in multilingual systems.
Their study built a non-validated dataset from 60 Java and 50
Python projects hosted on GITHUB, comprising 17, 278 sam-
ples that include commit messages, edit sequences, refactoring
techniques, and code refactoring diffs.

Unlike related works, our study perform a manual validation
process with a publicly accessible tool, enabling collaborative
annotations from contributors. This approach ensures not only
the reliability of the dataset but also its scalability, as additional
refactoring techniques and annotations can be integrated.

V. THREATS TO VALIDITY

Internal validity. The tools and scripts used in this study
may present a potential threat to internal validity. For instance,
we could not analyze 46 repositories (i.e., 27%) due to script
cloning errors or execution errors in RefactoringMiner. Given
that each code pair is independent of other pairs, a partially
failed analysis does not impact the rest of the dataset. Our
scripts only include snippets with at least one method decla-
ration and no more than 100 lines of code. While these criteria
might exclude valid refactorings, they ensure the feasibility of
a manual analysis. Finally, the manual validation process relies
on reviewer expertise, which may introduce personal biases.
To mitigate this potential issue, we ensured that each code pair
was evaluated by two reviewers.
External validity. Our dataset is limited to four refactor-
ing techniques detected in 126 open-source Java projects
from GITHUB. Therefore, our results may not generalize,
for instance, to other refactoring techniques or programming
languages. We mitigate these threats by focusing on active,
popular, community-driven Java projects with high numbers
of commits and stars. We also target the most prevalent refac-
toring techniques in the third quartile (Q3) due to the effort
required to manually classify a sufficient number of instances.
However, it is important to emphasize that our scripts are
prepared for the inclusion of new refactoring techniques; a
dataset extension we plan for the upcoming months.

VI. CONCLUSION AND FUTURE WORK

By selecting 126 repositories, focusing on a four of relevant
refactoring techniques, and implementing a robust data gath-
ering process followed by a manual evaluation, we created
high-quality MaRV dataset, with 693 refactoring entries. This
dataset serves as a valuable resource for further research and
development in the field of code refactoring, especially in the
context of automatic refactoring and LLMs.

We will extend this work by expanding the dataset with new
manual evaluations and additional refactoring techniques. We
also plan to use this dataset to fine-tune state-of-the-art models
so they can refactor source code more efficiently. Additionally,
we aim to explore the cases where reviewers disagreed in their
evaluations, as this may reveal interesting insights into the
nuances of code refactoring and model performance.
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