
Journal of Software Engineering Research and Development, 2019, 6:1, doi: 10.5753/jserd.2019.xxx
 This work is licensed under a Creative Commons Attribution 4.0 International License..

From Detection to Refactoring of Microservice Bad Smells: A
Systematic Literature Review
Mateus Dutra [Federal University of Minas Gerais | mateusmdutra@ufmg.br]
Denis Pinheiro [Federal University of Minas Gerais | denis.pinheiro@dcc.ufmg.br.br]
Johnatan Oliveira [Federal University of Lavras | johnatan.oliveira@ufla.br]
Eduardo Figueiredo [Federal University of Minas Gerais | figueiredo@dcc.ufmg.br]

Abstract
The extensive adoption of microservices architecture by technology companies is driven by its expected advan-

tages, such as scalability, simplicity of development, and resilience, likely due to its cloud-native nature. However,
the increasing complexity associated with this architecture can lead to the emergence of microservice smells, analo-
gous to code smells, indicating potential architectural design issues. Despite the identification of numerous microser-
vice smells in the literature, cohesive documentation to support architects detecting and refactoring them. This study
conducts a Systematic Literature Review (SLR) to deepen the understanding of these microservice smells, explore
detection tools and identify refactoring strategies to mitigate them.We conducted searches across six popular digital
libraries, analyzing 27 relevant papers. As a result, we cataloged 104 distinct microservice bad smells, identified 7
detection tools, and compiled refactoring strategies for the most prevalent smells. This documentation aims to assist
engineers and architects in identifying and effectively addressing microservice bad smells, thereby enhancing the
quality and maintainability of microservice-based systems.

Keywords: Microservice, Bad Smells, Refactoring, SLR

1 Introduction
Microservice is an architectural style emerging out of service-
oriented architecture, emphasizing self-management and
reusable components as the means to improve software
agility, scalability, fault tolerance, ease of deployment, main-
tainability, and autonomy (Jamshidi et al., 2018; De Lauretis,
2019; Alshuqayran et al., 2016). Microservices focus heavily
on loose coupling and high cohesion of services, which are
expected to improve the scalability, adaptability, and overall
quality of software architectures (Rademacher et al., 2019).
Given the extensive integration within major technology en-
terprises (Bogner, 2019; Taibi and Lenarduzzi, 2018), ensur-
ing the quality of microservices becomes a priority.
Architectural smells are symptoms of poor design that can

cause problems with code understandability and decrease
maintainability (Taibi and Lenarduzzi, 2018; Garcia et al.,
2009a). Several architectural smells have been defined in the
literature for both generic and specific architectures, such as
Shared Database (Garcia et al., 2009b; Taibi and Lenarduzzi,
2018; Taibi et al., 2018). However, cloud-native applications
based on microservices can be affected by different types of
issues (Taibi and Lenarduzzi, 2018), and the research field
for service-based antipatterns and microservice smells is not
as cohesive and organized (Bogner et al., 2019a).
To fill this gap, this paper extends our previous System-

atic Literature Review (SLR) (Pinheiro et al., 2022) in two
main ways. First, we updated the research to include all the
new relevant papers on microservice bad smells and detec-
tion tools published between 2021 and 2024, which were not
covered in the original work. Additionally, we compiled the
refactoring techniques for the most common smells, since
the previous SLR focused only on smell detection.
Although our previous work (Pinheiro et al., 2022) pro-

vided a valuable foundation by identifying key microservice
bad smells and related detection tools, the field has evolved
significantly in recent years. Several new tools, smell cat-
egories, and deployment contexts—such as Kubernetes-
native environments—have emerged. Moreover, the 2021 re-
view did not address refactoring strategies, which are essen-
tial for practical application and remain underexplored in the
literature (Guo and Wu, 2021).
While the 2021 SLR (Guo and Wu, 2021) presented pre-

liminary findings and a partial set of results, this study sig-
nificantly updates and consolidates that work by expanding
the number of reviewed studies, integrating newly proposed
detection tools, and introducing systematic refactoring strate-
gies for the most frequent microservice smells. Given the
growing volume of literature and the need for updated, ac-
tionable guidance, this extension was necessary to provide a
more comprehensive and current overview of the state of the
art in microservice architecture quality.
To update and address this concerns, our research con-

solidates and expands the knowledge about microservice
bad smells, supporting both their detection and resolution
through systematic refactoring strategies. More precisely,
this work has the following specific goals: (i) identify and
catalog microservice bad smells reported in the literature, (ii)
investigate and classify tools available for detecting these
smells, and (iii) compile and associate refactoring techniques
to address the most frequent microservice smells.
We found 27 primary studies related to microservice

smells and detection tools. Additionally, we collected 104
different smells, 7 detection tools, and 19 related tools com-
monly used to automate the detection of architecture smells
and to support the adoption of microservices. We also com-
piled refactoring guides for the 15 most frequent smells. The
main contribution of this paper is to assist engineers and ar-

mailto:mateusdutra@dcc.ufmg.br
mailto:denis.pinheiro@dcc.ufmg.br
mailto:johnatan.oliveira@ufla.br
mailto:figueiredo@dcc.ufmg.br

From Detection to Refactoring of Microservice Bad Smells: A Systematic Literature Review Dutra et al. 2024

chitects in identifying microservice bad smells and, through
refactoring strategies, provide guidance on how to address
them effectively.
The paper is organized as follows. Section 2 presents back-

ground and related work about microservice bad smells. Sec-
tion 3 describes the methods used in the research. Section
4 shows and discusses the results of the SLR in the light of
three research requestions. Section 5 lists possibles threats
to validity. Finally, Section 6 concludes the manuscript and
provides guidance for future works.

2 Related Work

Several research papers have investigated bad smells in
different software development artifacts, such as source
code (Santana et al., 2024) and design models (Cardoso and
Figueiredo, 2015). This section focuses on related work on
microservices bad smells, organized by relevance, proximity
to the topics discussed in each study, and their category
(Empirical Studies, Systematic Reviews, and Tool Proposal).

2.1 Empirical Studies

Arcelli Fontana et al. (2023) explore the impact of archi-
tectural smells on software performance, focusing on how
the removal of two common architectural smells, God Class
and Cyclic Dependency, affects performance metrics such
as CPU usage and memory consumption. Their study uses
tools like Arcan and Designite to detect these smells and
runs experiments on two systems: OpenMRS (a monolithic
system) and TeaStore (a microservice system). The results
show improvements in performance after smell refactoring,
with execution time reduced by up to 47% and memory con-
sumption by up to 20%, indicating that addressing architec-
tural smells can improve software performance. While Ar-
celli Fontana et al. (2023) focus on performance, particularly
execution time and memory usage, our study takes a broader
view by cataloging and analyzing 104 microservice-specific
bad smells. Our review goes beyond performance impacts,
delving into the tools and strategies for detecting and refac-
toring a wider variety of smells, covering 12 different cate-
gories.

Liu et al. (2021) conducted an empirical study on
the relationship between runtime performance deficien-
cies and architectural bad smells (ABS) in microservice
systems. They developed a Microservice Runtime Stress
Testing Framework (MRSTF) to test three architectural
bad smells—Dependency Circle, Poor Use of Abstract, and
Shared Database—on the Train Ticket system. The study
shows that these smells can negatively impact performance
metrics like CPU and memory usage, as well as response
times. Liu et al. focus on a narrow set of smells and their
impact on performance, while our research catalogs 104
microservice-specific bad smells and addresses both detec-
tion and some refactoring strategies across a wider range of
issues, not limited to performance.

2.2 Systematic Literature Reviews
Cerny et al. (2023) conducted a study that classifies re-
curring bad design practices, including antipatterns and bad
smells, in microservice architectures. They identified 58
unique microservice antipatterns and grouped them into
five categories: granularity, service interface, cohesion, inter-
service decomposition, and service interaction. The study
also discusses various methods for detecting these antipat-
terns through static and dynamic analysis. Cerny et al. (2023)
provide a broad overview and classification of antipatterns,
but they do not deeply explore refactoring strategies. In con-
trast, our work identifies a more extensive set of 104 mi-
croservice bad smells and focuses significantly on practical
refactoring strategies to address these issues.

Guo and Wu (2021) conducted a systematic literature re-
view focused on identifying bad smells in cloud-based ap-
plications and microservices. Their study proposed a classi-
fication of smells across different layers of cloud environ-
ments and presented a taxonomy covering application, in-
frastructure, and deployment smells. While their review pro-
vides a broader perspective on cloud computing systems, our
work focuses specifically on microservice architecture and
goes further by identifying refactoring strategies and detec-
tion tools. These differences highlight the contribution of our
review in providing actionable guidance for microservice-
specific architectural issues.
Table 1 presents a comparative analysis of four SLRs on

bad microservices smells, namely Cerny et al. (2023), Guo
and Wu (2021), Pinheiro et al. (2022), and the present work.
The comparison encompasses the number of smells reported,
the detection tools employed, and the refactoring strategies
proposed. By situating our study with respect to prior
research, Table 1 highlights the novel contributions of this
work. For instance, while we documented 104 microservices
smells, Pinheiro et al. (2022) found 47 ones. Furthermore,
as far as we are concerned, we are the first SLR to study
refactoring strategies for microservices smells.

2.3 Tool Proposals
Walker et al. (2020) present a method for detecting code
smells in microservice architectures through static anal-
ysis. They introduce MSANose, a tool that detects 11
microservice-specific code smells, including Cyclic Depen-
dency, Shared Persistency, andMicroservice Greedy. The au-
thors test this tool on two open-source systems, Train Ticket
and Teacher Management System, demonstrating that static
analysis can effectively identify architectural and design is-
sues in distributed systems. Walker et al. (2020) contribu-
tion is focused on the development of a specific tool for au-
tomated code smell detection. In contrast, our study takes a
broader perspective, offering a comprehensive overview of
microservice bad smells, not just focusing on detection.

Pigazzini et al. (2020) propose an extension of a
tool for detecting architectural smells, focusing on three
microservice-specific smells: Cyclic Dependencies, Hard-
Coded Endpoints, and Shared Persistence. They applied the
extended tool, Arcan, to five open-source projects to validate

From Detection to Refactoring of Microservice Bad Smells: A Systematic Literature Review Dutra et al. 2024

Table 1. Related Systematic Reviews Comparison
Paper Title Smells Detection Tools Refactoring Strategies
Cerny et al.
(2023)

Catalog and detection techniques of microser-
vice anti-patterns and bad smells: A tertiary
study

58 0 0

Guo and Wu
(2021)

A review of bad smells in cloud-based applica-
tions and microservices

34 0 0

Pinheiro et al.
(2022)

Microservice smells and automated detection
tools: A systematic literature review

47 5 0

Our SLR FromDetection to Refactoring ofMicroservice
Bad Smells: A Systematic Literature Review

104 7 15

the detection strategies. While their study effectively detects
these smells through static analysis, it is limited to just three
smells and does not address refactoring. In comparison, our
study provides a broader framework, identifying 104 distinct
microservice bad smells and placing significant emphasis on
refactoring strategies, offering more practical solutions for
handling a wider range of microservice smells.
In addressing security smells, Ponce et al. (2022) propose

a method called TriSS (Triage Security Smells), which helps
prioritize the resolution of microservice security smells by
assigning urgency codes based on the business relevance of
the services and the impact of the smells on security and
other quality attributes, such as performance and maintain-
ability. They focus on smells like centralized authorization,
hard-coded secrets, and insufficient access control. TriSS
helps practitioners systematically determine which security
smells to address first, providing a method for triaging based
on urgency. While this approach is essential for managing
security-related smells, our work takes a broader approach
by cataloging and examining 104 microservice-specific bad
smells, including those not directly tied to security concerns.
Our systematic review also emphasizes detection and refac-
toring strategies, providing more practical guidance on re-
solving these issues beyond just prioritizing them.

3 Methods
We conducted an SLR following well-known protocols and
guidelines (Kitchenham and Charters, 2007). Furthermore,
we considered updated practices (Kitchenham et al., 2015;
Pfleeger and Kitchenham, 2025) to improve reporting qual-
ity and ensure alignment with the most recent standards
for systematic literature reviews in software engineering.
SLR is a method used to identify, evaluate, and interpret
all available research on a specific topic (Kitchenham and
Charters, 2007). This process, following well-defined guide-
lines (Kitchenham and Charters, 2007; Kitchenham et al.,
2015; Pfleeger and Kitchenham, 2025), comprises two main
stages: planning and execution. The primary goal of this SLR
is to recognize and analyze documentedmicroservices smells
along with their corresponding detection tools and refactor-
ing techniques.
This work expands the previous review (Pinheiro et al.,

2022) by updating the analysis to include studies published
between 2021 and 2024. Furthermore, we also expand the
scope not only to catalog additional smells and detection

tools but also to identify refactoring strategies for the most
frequent smells. The updated timeframe ensures that the re-
view remains comprehensive and reflects the latest develop-
ments in the field of microservices architecture quality.

3.1 Planning
Following the guidelines proposed by Kitchenham (Kitchen-
ham and Charters, 2007), we planned the following steps: (1)
identify the topics to be investigated (research questions); (2)
select the digital libraries; (3) define the search string to re-
trieve relevant studies; and (4) apply a filtering process with
inclusion/exclusion criteria. This study aims to address three
main research questions related to the field of microservice
bad smells presented below.

RQ1. How has the research of microservice smells
evolved over time?

RQ2. What are the microservice smells detection
tools presented in the literature?

RQ3. What are the refactoring techniques for mi-
croservice smells described by the literature?

RQ1 aims to improve our understanding of the current re-
search landscape on microservice bad smells and how it has
evolved over time. By answering RQ1, we expect not only to
evaluate the maturity of this field but also to identify trends.
For instance, results may indicate whether the community’s
attention to microservice smells is growing, stable, or declin-
ing. We may also observe emerging topics. This RQ was in-
spired by previous studies (Lenarduzzi et al., 2020).
With RQ2, we aim at identifying the detection tools avail-

able in the literature and their practical adoption (Fernandes
et al., 2016). Engineers and architects rely on automated tools
to identify potential issues in complex microservice-based
systems. Therefore, our work can provide a comprehensive
overview of the tools and their detection approaches. RQ2
is motivated by the lack of consolidated surveys listing and
comparing detection tools for microservice smells.
Our RQ3 aims to compile refactoring techniques for mi-

croservice smells since detecting smells without proper guid-
ance for their correction leaves a gap in the practical applica-
bility. By answering this RQ, we aim to assist practitioners
in effectively addressing architectural problems and improve
their architectures. RQ3 stems from a limitation of our previ-

From Detection to Refactoring of Microservice Bad Smells: A Systematic Literature Review Dutra et al. 2024

ous SLR (Pinheiro et al., 2022), which focused on detection
but did not explore refactoring strategies.
Table 2 presents the list of digital libraries used to perform

this SLR. The filtering process allows classifying each study
under review as a candidate to be included or excluded from
the SLR based on specific criteria. Table 3 presents the inclu-
sion and exclusion criteria used to select the primary studies.

Table 2. Selected Digital Libraries
Database Address
ACM Digital Library https://dl.acm.org
IEEE Explore https://ieeexplore.ieee.org
Engineering Village https://www.

engineeringvillage.com
Science Direct https://www.sciencedirect.

com
Scopus https://scopus.com
Springer https://link.springer.com

The definition of the search string was based on the re-
search questions and aligned with guidelines from the litera-
ture (Kitchenham and Charters, 2007). In particular, we repli-
cate the search string from our previous SLR (Pinheiro et al.,
2022), which already established a validated set of keywords.
That is, we reused their original search and empirically eval-
uated its outputs as detailed below.

microservice ∧ (architectural smell ∨
code smell ∨ bad smell ∨ anti − pattern ∨

technical debt)

We reused the search string of our previous SLR (Pinheiro
et al., 2022) since it was aligned with our research scope and
was effective in identifying relevant studies. To assess the
accuracy and completeness of the search string, we empiri-
cally evaluated its results using the test set method. That is,
we checked whether a known set of relevant papers (Taibi
and Lenarduzzi, 2018; Bogner et al., 2018; Soldani. et al.,
2023) appeared in the search results. Additionally, two re-
searchers independently reviewed the initial search results
to verify their relevance.
The execution of the search varied slightly depending on

the database. In IEEE Xplore and Scopus, we used the ad-
vanced search interface to search in title, abstract, and key-
words. In databases that did not offer this granularity, such
as ACM Digital Library, we searched in the entire metadata.
All searches were restricted to papers written in English and
from the Computer Science field. We applied filters manu-
ally when available (e.g., the language and subject area filters
available in Scopus).

3.2 Execution
Figure 1 illustrates the data extraction process following the
PRISMA flow diagram (Page et al., 2021). This process was
conducted using the selected digital libraries listed in Ta-
ble 2. The search results were independently examined and
screened by two authors.
The execution of these search steps was guided to fulfill

and respond to the research questions. Step 1 involved iden-

Table 3. Filter criteria
Inclusion Criteria Exclusion Criteria
Papers published in Com-
puter Science

Papers shorter than five
pages

Papers written in English Thesis, dissertations, tuto-
rials and grey literature

Papers available in elec-
tronic format
Propose or cite microservice
bad smell

tifying all papers containing the keywords microservice and
architecture smells (or their synonyms) somewhere in the pa-
per text, including all metadata. This search, considering all
published works, resulted in 1,887 papers. In Step 2, we fil-
tered out all duplicate papers and applied the inclusion and
exclusion criteria, resulting in 1,331 papers. In Step 3, we an-
alyzed the titles of the remaining papers, which reduced the
count to 529. Step 4 involved analyzing the abstracts of these
papers, further narrowing the count to 162. Finally, in Step 5,
we conducted a full-text review, selecting 27 primary studies
that reported on microservice smells, their detection tools, or
refactoring techniques.

4 Results and Discussion
This section presents the findings of our systematic litera-
ture review on microservice bad smells. First, we provide an
overview of the primary studies selected. Subsequently, we
delve into the evolution of research on microservice smells,
the detection tools identified in the literature, and the refac-
toring techniques proposed to mitigate these smells. Finally,
we discuss the application of the detection and refactoring for
practitioners, such as developers and architects. Each subsec-
tion aims to provide a comprehensive understanding of these
aspects, contributing to a holistic view of the current state of
research in this domain.
On our supplementary website 1, we have compiled and

organized all 104 microservice smells identified across the
27 studies. These smells are grouped into 12 distinct cate-
gories to simplify their identification: API Management, De-
pendency Management, Middleware, Discovery, Data Man-
agement, Decomposition, Team/Product Management, Ar-
chitectural Standards, Quality Assurance, DevOps (CI/CD),
Documentation, and Migration. This categorization aims to
offer a clearer structure and better understanding of the dif-
ferent types of smells.

4.1 Trends in Microservice Bad Smells Re-
search

This section discusses the results for the first research ques-
tion.
RQ1- How has the research of microservice smells

evolved over time?

1The exhaustive list of 104 microservice smells is available at
https://github.com/mateusmdutra/microservice-bad-smells/
blob/main/complete-list-smells.pdf.

https://dl.acm.org
https://ieeexplore.ieee.org
https://www.engineeringvillage.com
https://www.engineeringvillage.com
https://www.sciencedirect.com
https://www.sciencedirect.com
https://scopus.com
https://link.springer.com
https://github.com/mateusmdutra/microservice-bad-smells/blob/main/complete-list-smells.pdf
https://github.com/mateusmdutra/microservice-bad-smells/blob/main/complete-list-smells.pdf

From Detection to Refactoring of Microservice Bad Smells: A Systematic Literature Review Dutra et al. 2024

Figure 1. Research execution

Figure 2 (A) shows the overall raising interest given the
publication years of the selected primary studies that pre-
sented research related to microservice smells. The research
interest in this area began in 2018, with three notable papers
published that year (Taibi and Lenarduzzi, 2018; Carrasco
et al., 2018; Bogner et al., 2018). Since then, the field has
seen consistent interest, peaking in 2020 with seven papers.
Although Figure 2 shows a stable level of interest over re-
cent years, the topic remains underrepresented in the litera-
ture. This underscores the needs for further in-depth studies
and innovative approaches to advance the understanding of
microservice smells.
Analyzing the publication venues and the number of pub-

lications in each, we found that TechDebt, JSS, and LNBIP
had the most publications, with a total of three each. Fol-
lowing these, ICSA, SEAA, and EASE had two publications
each among the selected primary studies. All other publica-
tion venues had one publication each, including recognized
software engineering conferences, such as ICSME and vari-
ous scientific journals.
Figure 2 (B) presents the research types identified in the se-

lected studies. We considered following research types: Sur-
vey as the research performed by using a questionnaire or
interviewing participants (Viggiato et al., 2018); New Ap-
proach, research proposing a new method that solves a com-
mon problem in microservice-based systems; Case study, re-
search that studied a real or hypothetical problem related to
microservice smells, Tool presentation, research presenting
a new tool or a new version of a tool; and Review, research
that made a scientific review of white and gray literature.
We found 4 papers that published the result of Surveys and

6 studies that presentedNew Approaches. For instance, Taibi
and Lenarduzzi (2018) presented at first time the 11microser-
vice smells catalog as a result of interviewing 72 developers
with experience in developing microservice-based systems.
As another example, Gaidels and Kirikova (2020) presented
a service dependency graph analysis in the process of identi-
fying microservice smells.
We found 7 works that presented Case study as research

method. For instance, Toledo et al. (2020) performed a mul-
tiple case study in 4 international companies, supported by 6
architects and, as a result, the research reported 9 issues re-
lated to Shared Library and 2 solutions were proposed. Eight
(8) works performed a Tool presentation of automated mi-
croservice smells detection. Other two (2) researches pre-
sented a Review of white and gray literature related to ar-
chitecture design and the migration process of microservice-

based systems.
Notably, we can observe that the initial 11 microservice

smells, proposed by Taibi and Lenarduzzi (2018), are preva-
lent across the majority of the reviewed literature (Table
6), with the detection tools covering most of these identi-
fied smells (Section 4.2). This finding emphasizes the sig-
nificance and persistence of these issues in microservice ar-
chitecture. The most frequently cited smells in the papers
were Not Having an API Gateway (Ntentos et al., 2021;
Tighilt et al., 2023; Soldani. et al., 2023; Soldani et al., 2021;
Taibi and Lenarduzzi, 2018), Cyclic Dependency (Taibi and
Lenarduzzi, 2018; Pigazzini et al., 2022; Tighilt et al., 2023;
Gamage and Perera, 2021) and Shared Database (Taibi and
Lenarduzzi, 2018; Walker et al., 2021; Tighilt et al., 2023;
Soldani et al., 2021).

Main Findings – RQ1: Smell Landscape

We summarized the landscape of publications about
microservices bad smell by year and types of re-
searches. We observed that the number of publica-
tions has increased from 2018 to 2023. Furthermore,
themost common type of publication is work present-
ing new tools.

4.2 Overview of Detection Tools
This section discusses the results for the second research
question.
RQ2- What are the microservice smells detection tools

presented in the literature?
There are several approaches for detecting microservice

smells. The first and most intuitive method is static analy-
sis of the code and configuration files of microservices. This
approach identifies potential smells, such as Endpoint-based
Communication, Nano Services, and Shared Libraries. An-
other method is dynamic detection, which involves analyz-
ing distributed tracing in running applications or collecting
application metrics.
For static analysis, Pigazzini et al. (2020) introduced a

new version of Arcan, which detects three microservices
smells from the Taibi and Lenarduzzi catalogue (Taibi
and Lenarduzzi, 2018). Walker et al. (2021) presented the
MSANose tool, capable of detecting 11 microservice smells
reported by Taibi and Lenarduzzi (Taibi and Lenarduzzi,
2018). MSANose was evaluated for detection accuracy us-
ing two benchmark projects (Walker et al., 2021). Addition-

From Detection to Refactoring of Microservice Bad Smells: A Systematic Literature Review Dutra et al. 2024

Figure 2. (A) Publications by Year and (B) Research Types

ally, Capilla et al. (2023) and Fang et al. (2023) utilized
the Designite tool 2 to detect various microservice smells.
Similarly, Tighilt et al. (2023) proposed MARS (Microser-
vice Antipatterns Research Software), a tool that detects 16
microservice smells by analyzing source code, environment
files, configuration files, deployment files, databases, docker
images, HTTP requests, and imports. In Kubernetes environ-
ments, Soldani et al. (2021); Soldani. et al. (2023) introduced
two tools: µTOSCA toolchain, which analyzes, detects, and
resolves microservice smells in existing Kubernetes environ-
ments, andKubeFreshener, which detects and helps refactor
microservice smells in Kubernetes deployment units.
Regarding dynamic analysis, Pigazzini et al. (2022) ex-

tended Arcan to support dynamic analysis and compared
the results with the existing static analysis tool. Gamage
and Perera (2021) proposed the MAIG tool for detecting
5 microservice bad smells through runtime data, automati-
cally generating up-to-date dependency models with metrics.
Moreover, microservice-based systems, like other software
systems with source code, can introduce both architectural
and code smells. These may be identified by regular detec-
tion tools such as SonarQube 3. Bogner et al. (2018, 2019b)
conducted two studies on 19 tools that support and address
symptoms of lowmaintainability and the challenges of evolv-
ing microservices.

Main Findings – RQ2: Detection Tools

We identified 7 specific tools for detecting microser-
vice bad smells.Most tools rely on static analysis, but
a few tools also support dynamic analysis.MSANose
and Arcan are the most cited tools, but the newest
tools focus on cloud-native contexts (e.g., Kuber-
netes).

4.3 Refactoring Techniques
This section discusses the results for our third research ques-
tion.
RQ3- What are the refactoring techniques for microser-

vice smells described by the literature?

2https://designite-tools.com/
3https://www.sonarsource.com/products/sonarqube/

As noted in Section 3.2, some of the 104 identified smells
show interrelations. Table 6 presents a reduced list of 15 mi-
croservice smells found in the selected studies. In this paper,
we focus on smells that: (i) were reported by two or more
studies and (ii) were identified by a detection tool. The first
column contains the microservice bad smell name; the sec-
ond column lists the detection tools available for each smell;
and the third column describes refactoring to guide architects
in mitigating them inside their microservices systems.
Table 6, shows three of the most related smells (Cyclic De-

pendency, No API Gateway and Shared Database) are cov-
ered by the majority of the detection tools. The Arcan tool
detects all selected smells. Notably, with the extension on
Arcan, made by Pigazzini et al. (2022), two dependencies-
related smells (Cyclic Dependency and Hub-like Depen-
dency) can be detected using both static and dynamic anal-
ysis.
The following studies discuss refactoring strategies for mi-

croservice bad smells: Taibi and Lenarduzzi (2018), Sol-
dani. et al. (2023), Soldani et al. (2021) and Pulnil and
Senivongse (2022). They examine refactorings for various
smells, including Cyclic Dependency, Microservice Greedy
and Wrong Cuts, highlighting important microservice archi-
tecture principles such as modularization, separation of con-
cerns, and responsibility assignment. Furthermore, Endpoint-
Based Service Interaction and Hard-Coded Endpoints repre-
sent two related smells that necessitate distinct refactoring
approaches. The former focuses on minimizing the number
of endpoint calls, introducing event-driven architecture or
message queues, and the latter seeks to eliminate explicit
endpoint declarations by promoting the use of configuration-
based endpoint discovery.
Hub-like Dependency (Capilla et al., 2023; Ar-

celli Fontana et al., 2023; Pigazzini et al., 2022) was
a well-discussed microservice bad smell. However, the
selected studies do not provide an explicit refactoring guide
for addressing it. Given the definition of this smells —
where classes or modules (representing other services in
a microservice architecture) has excessive responsibilities
and depend on numerous other components — we propose
a corresponding refactoring strategy based on ESB Usage.
This strategy similarly aims to decentralize communication
among services.
Nano Service was discussed in two studies (Tighilt et al.,

https://designite-tools.com/
https://www.sonarsource.com/products/sonarqube/

From Detection to Refactoring of Microservice Bad Smells: A Systematic Literature Review Dutra et al. 2024

Table 4. Detection tools for microservice bad smells: scope and coverage
Tool Purpose Type of

Analysis
Functional Scope and Smells Detected Reference

Arcan Detect architectural smells
and violations

Static /
Dynamic

Analyzes service dependencies and modu-
larity; detects 3 smells (e.g., Cyclic Depen-
dency, Shared Persistence); extended to dy-
namic analysis in 2022

Pigazzini
et al. (2020,
2022)

MSANose Identify microservice-
specific smells

Static Applies static code analysis in microser-
vices; detects 11 smells from Taibi and
Lenarduzzi (2018), includingMicroservice
Greedy and Shared Persistency

Walker et al.
(2021)

Designite Identify design and architec-
tural smells

Static Detects various design smells (e.g., God
Class, Cyclic Dependency); not exclusive
to microservices

Capilla et al.
(2023)

MARS Detect microservice antipat-
terns and smells

Static Analyzes code, config files, docker images,
andHTTP requests; detects 16 smells using
rule-based analysis

Tighilt et al.
(2023)

µTOSCA Analyze and refactor mi-
croservice deployments

Static Focuses on Kubernetes environments;
identifies and resolves deployment-related
smells; smell count not specified

Soldani et al.
(2021)

KubeFreshener Refactor Kubernetes deploy-
ments

Static Detects and suggests refactorings for
smells in Kubernetes YAML deployment
files

Soldani. et al.
(2023)

MAIG Detect runtime smell pat-
terns

Dynamic Builds runtime dependency graphs; detects
5 dynamic architectural smells related to
service coupling

Gamage and
Perera (2021)

SonarQube General code analysis Static Detects generic code smells, bugs, and vul-
nerabilities; not specific to microservices

Bogner et al.
(2018, 2019b)

2023; Gamage and Perera, 2021). Similar to the Hub-like
Dependency smell, Nano Service did not have a refactor-
ing proposal in the collected papers. For this smell, we pro-
pose a refactoring approach analogous to Fowler’s ’Inline
Method’ for code smells (Fowler, 1999). In this approach,
services that perform minimal functions are recommended
to be merged into a larger service with well-defined respon-
sibilities. Microservice Greedy has the same refactoring as
Nano Service (Taibi and Lenarduzzi, 2018).

Table 5 presents a selection of the most frequently dis-
cussed microservice smells along with their respective detec-
tion tools and proposed refactoring strategies.

The strategies discussed above serve not only as academic
insights but also as practical guidance for software profes-
sionals. The following section explores how these findings
can be applied in real-world development environments.

Main Findings – RQ3: Refactoring Strategies

We compiled refactoring strategies for the 15 most
cited microservice smells. Some smells, such as
Cyclic Dependency and Shared Database, are sup-
ported by most detection tools. However, other
smells (e.g., Nano Service) lacked refactoring tech-
niques in the literature — we proposed them based
on code-level analogies. Most strategies emphasize
modularization, service boundaries, and configura-
tion improvements.

4.4 Implications for Practitioners and Re-
searchers

The refactoring list and related detection tools are a practical
reference for microservices practitioners. Both architects and
developers can use the proposed refactorings to improve ex-
isting microservices applications, or use them as guidelines
on architecting and developing new microservices applica-
tions. The detection tools can be explored and configured
on build pipelines as an automatic detector of microservices
bad smells, in a fast failure workflow, by improving internal
quality of microservices application during quality assurance
phase of a DevOps pipeline. To support adoption by industry
professionals, we have made the complete catalog of 104 mi-
croservice bad smells publicly available on GitHub4.
In addition, the structured dataset presented in this study

also serves as a solid foundation for researchers interested in
empirical validation, tool evaluation, or extending the taxon-
omy of microservice architectural problems. This resource
can also serve as a practical reference during code reviews,
architectural assessments, or as part of DevOps pipelines.
Tools discussed in Section 4.2 may be incorporated into
CI/CD workflows to automate the detection of architectural
issues. We encourage researchers, developers, and architects
to adapt and extend these resources according to their partic-
ular interests (e.g., research and project contexts).

4https://github.com/mateusmdutra/
microservice-bad-smells/blob/main/complete-list-smells.
pdf

https://github.com/mateusmdutra/microservice-bad-smells/blob/main/complete-list-smells.pdf
https://github.com/mateusmdutra/microservice-bad-smells/blob/main/complete-list-smells.pdf
https://github.com/mateusmdutra/microservice-bad-smells/blob/main/complete-list-smells.pdf

From Detection to Refactoring of Microservice Bad Smells: A Systematic Literature Review Dutra et al. 2024

Table 5. Selected microservice bad smells and proposed refactorings
Smell Tools Available Refactoring Strategy
No API Gateway µTOSCA, KubeFreshener Introduce a centralized API gateway to handle routing, authen-

tication, rate limiting
Hard-Coded End-
points

Arcan, MSANose Replace static endpoint calls with configuration-based dynamic
discovery

Nano Service Arcan, MAIG Merge very small services into larger cohesive units (“Inline
Method” approach)

Shared Database MSANose, MARS Decouple services by migrating to separate databases per ser-
vice

Microservice Greedy Arcan, MSANose Split services with excessive responsibilities into well-scoped
components

5 Threats to Validity
The main threat when performing the SLR is the validity of
the results. We discussed the SLR validity with respect to the
4 groups of common threats to validity: internal, construct,
external, and conclusion (Wohlin, 2000).
Internal validity: A potential limitation of this study is that

if it were replicated by another team of researchers, some
studies excluded in this review might be included, and others
currently included could be excluded. This study has been ad-
dressed by involving four researchers, and by a protocol that
was piloted and evaluated. However, in general, we believe
that the internal validity of the SLR is high given the use of
a systematic procedure, consultation with the researchers in
the field, involvement, and discussion between the four re-
searchers.
Construct validity: The four authors of this study are re-

searchers in the software engineering field. We are not aware
of any bias we may have introduced during the analyses.
However, from the reviewer’s perspective, a construct valid-
ity threat could be biased judgment. In this study, the deci-
sion of which studies to include or to exclude and how to
categorize the studies could be biased and thus pose a threat.
A possible threat in such a review is to exclude some relevant
papers. To minimize this threat both the processes of inclu-
sion and exclusion were piloted by three coauthors. Further-
more, potentially relevant studies that were excluded were
documented. This way, we believe that we do not have omit-
ted relevant papers.
External validity: The identified primary studies may not

generalize. The search for the papers was conducted in 6 rel-
evant scientific databases in order to capture as much as pos-
sible the available papers. However, the quality of search en-
gines could have influenced the completeness of the identi-
fied primary studies. That means our searchmay havemissed
those studies whose authors would have used other terms to
specify the microservice bad smells, or may not have used
the keywords that we used for searches in the title, abstract,
and keywords of their papers.
Conclusion validity: Furthermore, from the authors’ per-

spective, a potential threat to conclusion validity is the relia-
bility of the data extraction from the primary studies, since
not all information was obvious to answer the research ques-
tions and some data had to be inferred. Therefore, in order
to ensure conclusion validity, sometimes cross-discussions
among the paper authors took place to reach a common agree-

ment. Furthermore, in the event of a disagreement between
the two researchers, a third author acted as an arbitrator to
ensure a position to be reached.

6 Conclusion and Future Work
This paper presents a systematic literature review on mi-
croservice bad smells and detection tools. We found that in-
terest in microservice bad smells has been increasing since
2018, with surveys being the most common research type
published in recognized scientific venues, such as TecDebt,
ICSA, and IEEE Software. We identified 104 microservice
bad smells categorized by the primary studies, all represent-
ing symptoms of design or implementation flaws in microser-
vice projects. Additionally, we found seven detection tools
that identify the initial smells presented by Taibi and Lenar-
duzzi (2018), as well as some discovered later. Finally, to
mitigate the most common smells, we created a list of recom-
mended refactoring strategies along with the available detec-
tion tools for each smell.
As future work, we intend to compile a guideline based on

the reported microservice smells to help architects identify
and avoid bad practices during the development of microser-
vices. Furthermore, we aim to deepen the dynamic analy-
sis of microservice bad smells, combining metrics collection
with quality analysis. Moreover, we also plan to carry out a
case study comparing the detection results of the different
tools found, in order to see the validity of each one of them
for each case. Additionally, we plan to conduct a survey with
practitioners to gather insights on how detection tools and
the refactoring strategies can be effectively incorporated into
their daily workflows.

Acknowledgements
This research was partially supported by Brazilian funding agen-
cies: CNPq (Grant 305171/2025-9), CAPES, and FAPEMIG (Grant
APQ-01488-24).

References
Alshuqayran, N., Ali, N., and Evans, R. (2016). A system-
atic mapping study in microservice architecture. In 2016

From Detection to Refactoring of Microservice Bad Smells: A Systematic Literature Review Dutra et al. 2024

IEEE 9th International Conference on Service-Oriented
Computing and Applications (SOCA), pages 44–51.

Arcelli Fontana, F., Camilli, M., Rendina, D., Taraboi, A. G.,
and Trubiani, C. (2023). Impact of architectural smells on
software performance: an exploratory study. In Proceed-
ings of the 27th International Conference on Evaluation
and Assessment in Software Engineering, pages 22–31.

Bogner, J. (2019). Microservices in industry: insights into
technologies, characteristics, and software quality. IEEE
international conference on software architecture com-
panion (ICSA-C).

Bogner, J., Boceck, T., Popp, M., Tschechlov, D., Wagner,
S., and Zimmermann, A. (2019a). Towards a collaborative
repository for the documentation of service-based antipat-
terns and bad smells. In International Conference on Soft-
ware Architecture Companion (ICSA-C), pages 95–101.

Bogner, J., Fritzsch, J., Wagner, S., and Zimmermann, A.
(2018). Limiting technical debt with maintainability as-
surance: An industry survey on used techniques and differ-
ences with service- andmicroservice-based systems. In In-
ternational Conference on Technical Debt, page 125–133.

Bogner, J., Fritzsch, J., Wagner, S., and Zimmermann, A.
(2019b). Assuring the evolvability of microservices: In-
sights into industry practices and challenges. In Interna-
tional Conference on Software Maintenance and Evolu-
tion (ICSME), pages 546–556.

Capilla, R., Fontana, F. A., Mikkonen, T., Bacchiega, P.,
and Salamanca, V. (2023). Detecting architecture debt
in micro-service open-source projects. In 49th Euromicro
Conference on Software Engineering and Advanced Appli-
cations (SEAA), page 394 – 401.

Cardoso, B. and Figueiredo, E. (2015). Co-occurrence of
design patterns and bad smells in software systems: An
exploratory study. In Proceedings of the Brazilian Sympo-
sium on Information Systems (SBSI).

Carrasco, A., Van Bladel, B., and Demeyer, S. (2018). Mi-
grating towards microservices: Migration and architec-
ture smells. In International Workshop on Refactoring
(IWoR/ASE), pages 1 – 6.

Cerny, T., Abdelfattah, A. S., Maruf, A. A., Janes, A., and
Taibi, D. (2023). Catalog and detection techniques of mi-
croservice anti-patterns and bad smells: A tertiary study.
Journal of Systems and Software, 206.

De Lauretis, L. (2019). From monolithic architecture to mi-
croservices architecture. pages 93–96.

Fang, H., Cai, Y., Kazman, R., and Lefever, J. (2023). Iden-
tifying anti-patterns in distributed systems with heteroge-
neous dependencies. In IEEE 20th International Confer-
ence on Software Architecture Companion (ICSA-C).

Fernandes, E., Oliveira, J., Vale, G., Paiva, T., and
Figueiredo, E. (2016). A review-based comparative study
of bad smell detection tools. In 20th International Confer-
ence on Evaluation and Assessment in Software Engineer-
ing (EASE).

Fowler, M. (1999). Refactoring: Improving the Design of Ex-
isting Code. Addison-Wesley Professional, Boston, MA.

Gaidels, E. and Kirikova, M. (2020). Service dependency
graph analysis in microservice architecture. In Proceed-
ings of the 19th International Conference on Business In-

formatics Research (BIR), pages 128–139. Springer.
Gamage, I. U. P. and Perera, I. (2021). Using dependency
graph and graph theory concepts to identify anti-patterns
in a microservices system: A tool-based approach. In
Moratuwa Engineering Research Conference (MERCon).

Garcia, J., Popescu, D., Edwards, G., and Medvidovic, N.
(2009a). Identifying architectural bad smells. In 2009
13th European Conference on Software Maintenance and
Reengineering, pages 255–258.

Garcia, J., Popescu, D., Edwards, G., and Medvidovic, N.
(2009b). Toward a Catalogue of Architectural Bad Smells,
pages 146–162. Springer.

Guo, D. andWu, H. (2021). A review of bad smells in cloud-
based applications and microservices. In 2021 Interna-
tional Conference on Intelligent Computing, Automation
and Systems (ICICAS), pages 255–259.

Jamshidi, P., Pahl, C., Mendonça, N. C., Lewis, J., and
Tilkov, S. (2018). Microservices: The journey so far and
challenges ahead. IEEE Software, 35(3):24–35.

Kitchenham, B. A., Budgen, D., and Brereton, P. (2015).
Evidence-Based Software Engineering and Systematic Re-
views. Chapman & Hall/CRC.

Kitchenham, B. A. and Charters, S. (2007). Guidelines for
performing systematic literature reviews in software engi-
neering. Technical Report EBSE 2007-001.

Lenarduzzi, V., Lomio, F., Saarimäki, N., and Taibi, D.
(2020). Does migrating a monolithic system to microser-
vices decrease the technical debt? Journal of Systems and
Software, 169:110710.

Liu, L., Tu, Z., He, X., Xu, X., and Wang, Z. (2021). An em-
pirical study on underlying correlations between runtime
performance deficiencies and “bad smells” of microser-
vice systems. In 2021 IEEE International Conference on
Web Services (ICWS), pages 751–757.

Neri, D., Soldani, J., Zimmermann, O., and Brogi, A. (2020).
Design principles, architectural smells and refactorings for
microservices: a multivocal review. volume 35.

Ntentos, E., Zdun, U., Plakidas, K., and Geiger, S. (2021).
Evaluating and improving microservice architecture con-
formance to architectural design decisions. In Service-
Oriented Computing, page 188–203.

Page, M. J. et al. (2021). The prisma 2020 statement: an
updated guideline for reporting systematic reviews. BMJ,
372.

Pfleeger, S. L. and Kitchenham, B. (2025). Evidence-based
software engineering guidelines revisited. IEEE Transac-
tions on Software Engineering.

Pigazzini, I., Di Nucci, D., Fontana, F. A., and Belotti, M.
(2022). Exploiting dynamic analysis for architectural
smell detection: a preliminary study. In 48th Euromicro
Conference on Software Engineering and Advanced Ap-
plications (SEAA), page 282 – 289.

Pigazzini, I., Fontana, F. A., Lenarduzzi, V., and Taibi, D.
(2020). Towards microservice smells detection. In Pro-
ceedings of the 3rd International Conference on Technical
Debt, pages 92–97.

Pinheiro, D., Oliveira, J., and Figueiredo, E. (2022). Mi-
croservice smells and automated detection tools: A sys-
tematic literature review. In In proceedings of the Inter-

From Detection to Refactoring of Microservice Bad Smells: A Systematic Literature Review Dutra et al. 2024

national Conference on Microservices (Microservices).
Ponce, F., Soldani, J., Astudillo, H., and Brogi, A. (2022).
Smells and refactorings for microservices security: A mul-
tivocal literature review. Journal of Systems and Software,
192:111393.

Pulnil, S. and Senivongse, T. (2022). A microservices qual-
ity model based on microservices anti-patterns. In 19th
International Joint Conference on Computer Science and
Software Engineering (JCSSE).

Rademacher, F., Sachweh, S., and Zündorf, A. (2019).
Aspect-oriented modeling of technology heterogeneity in
microservice architecture. In International Conference on
Software Architecture (ICSA).

Santana, A., Figueiredo, E., Pereira, J. A., and Garcia, A.
(2024). An exploratory evaluation of code smell agglom-
erations. Software Quality Journal.

Soldani., J., Marinò., M., and Brogi., A. (2023). Semi-
automated smell resolution in kubernetes-deployed mi-
croservices. In Proceedings of the 13th International
Conference on Cloud Computing and Services Science -
CLOSER, pages 34–45. INSTICC, SciTePress.

Soldani, J., Muntoni, G., Neri, D., and Brogi, A. (2021).
The μtosca toolchain: Mining, analyzing, and refactoring
microservice-based architectures. Software - Practice and
Experience, 51(7):1591 – 1621.

Taibi, D. and Lenarduzzi, V. (2018). On the definition of
microservice bad smells. IEEE Software.

Taibi, D., Lenarduzzi, V., and Pahl, C. (2018). Architectural
patterns for microservices: A systematic mapping study.
In Int’l Conf. on Cloud Computing and Services Science
(CLOSER).

Tighilt, R. et al. (2023). On the maintenance support for
microservice-based systems through the specification and
the detection of microservice antipatterns. Journal of Sys-
tems and Software, 204:111755.

Toledo, S., Martini, A., and Sjøberg, D. (2020). Improving
agility by managing shared libraries in microservices. Lec-
ture Notes in Business Information Processing (LNBIP).

Viggiato, M., Terra, R., Rocha, H., Valente, M. T., and
Figueiredo, E. (2018). Microservices in practice: A survey
study. In 6th Workshop on Software Visualization, Evolu-
tion and Maintenance (VEM).

Walker, A., Das, D., and Cerny, T. (2020). Automated code-
smell detection in microservices through static analysis: A
case study. Applied Sciences, 10(21):7800.

Walker, A., Das, D., and Cerny, T. (2021). Automated mi-
croservice code-smell detection. In Information Science
and Applications, page 211–221. Springer Singapore.

Wohlin, C. (2000). Experimentation in Software Engineer-
ing: An Introduction. The sKluwer ISECS.

From Detection to Refactoring of Microservice Bad Smells: A Systematic Literature Review Dutra et al. 2024

A Appendix

Table 6.Microservice Bad Smells refactorings
Smell Tools Refactoring Studies
API Versioning Arcan, MARS,

MSANose
Update the API design to support multiple
versions, allowing backward compatibility and
smoother transitions for clients

(Taibi and Lenar-
duzzi, 2018; Pulnil
and Senivongse,
2022)

Cyclic Dependency Arcan, Designite,
KubeFreshener,
MAIG, MARS,
MSANose

Restructure services to remove circular dependen-
cies via modularization

(Taibi and Lenar-
duzzi, 2018; Soldani.
et al., 2023; Soldani
et al., 2021; Pulnil
and Senivongse,
2022)

Endpoint-Based Ser-
vice Interaction

µTOSCA, Arcan,
KubeFreshener

Redesign services to minimize direct endpoint
calls, which can create tight coupling and reduce
flexibility. Adopt messaging patterns like event-
driven architecture or message queues to decouple
services, improving scalability and fault tolerance

(Soldani. et al., 2023;
Soldani et al., 2021;
Neri et al., 2020)

ESB Usage Arcan, MSANose Replace the centralized Enterprise Service Bus
(ESB) with decentralized communication meth-
ods, such as direct service-to-service communica-
tion or lightweight messaging systems

Taibi and Lenarduzzi
(2018); Pulnil and
Senivongse (2022)

Hard-Coded End-
points

Arcan, MARS,
MSANose

Remove explicit endpoint references from ser-
vice code and adopting dynamic or configuration-
based approaches for endpoint discovery

Taibi and Lenarduzzi
(2018) Pulnil and
Senivongse (2022)

Hub-like Depen-
dency

Arcan Restruct services to reduce their reliance on a cen-
tral hub for communication. This includes promot-
ing direct interactions between services and decen-
tralizing communication patterns

Inappropriate Ser-
vice Intimacy

Arcan, MSANose Adjust service boundaries to reduce unnecessary
dependencies and interactions between services

Taibi and Lenarduzzi
(2018)

Microservice Greedy Arcan, MSANose Consolidate overly granular microservices that
serve limited purposes into larger, more cohesive
units

Taibi and Lenarduzzi
(2018) Pulnil and
Senivongse (2022)

Nano Service Arcan, MAIG,
MARS

Consolidate excessively small microservices,
which perform trivial or minimal functions, into
larger, more cohesive units

No API Gateway µTOSCA, Arcan,
Kubefreshener,
MARS, MSANose

Introduce an API gateway to serve as a central
entry point for client requests, providing various
functionalities such as routing and authentication

Soldani. et al. (2023)
Neri et al. (2020)

Shared Database µTOSCA, Arcan,
MARS, MSANose

Decouple microservices by migrating from a sin-
gle, shared database to separate databases per ser-
vice

Soldani et al. (2021)
Neri et al. (2020) Pul-
nil and Senivongse
(2022)

Shared Libraries Arcan, MARS,
MSANose

Break down monolithic shared libraries into
smaller, specialized libraries or services that can
be independently deployed and maintained

Taibi and Lenarduzzi
(2018) Pulnil and
Senivongse (2022)

Too Many Standards Arcan, MSANose Rationalize and standardize the technology stack,
protocols, and development practices

Taibi and Lenarduzzi
(2018) Pulnil and
Senivongse (2022)

Wobbly Service Inter-
action

µTOSCA, Arcan,
KubeFreshener

Stabilize and optimize communication patterns be-
tween microservices to ensure consistency, relia-
bility, and efficiency. Such as introducing time-
outs and circuit breakers

Soldani. et al. (2023)
Soldani et al. (2021)
Neri et al. (2020)

Wrong Cuts Arcan, MARS,
MSANose

Reassess and adjust the boundaries of microser-
vices to better align with business domains and
functional responsibilities

Taibi and Lenarduzzi
(2018) Pulnil and
Senivongse (2022)

	Introduction
	Related Work
	Empirical Studies
	Systematic Literature Reviews
	Tool Proposals

	Methods
	Planning
	Execution

	Results and Discussion
	Trends in Microservice Bad Smells Research
	Overview of Detection Tools
	Refactoring Techniques
	Implications for Practitioners and Researchers

	Threats to Validity
	Conclusion and Future Work
	Appendix

