Evaluating the Effectiveness of LLMs in Fixing
Maintainability Issues in Real-World Projects

Henrique Nunes
Federal University of Minas Gerais
Belo Horizonte, Brazil
henrique.mg.bh@gmail.com

Sarah Nadi
New York University Abu Dhabi
Abu Dhabi, United Arab Emirates
sarah.nadi @nyu.edu

Abstract—Large Language Models (LLMs) have gained atten-
tion for addressing coding problems, but their effectiveness in
fixing code maintainability remains unclear. This study evaluates
LLMs capability to resolve 127 maintainability issues from 10
GitHub repositories. We use zero-shot prompting for Copilot
Chat and Llama 3.1, and few-shot prompting with Llama only.
The LLM-generated solutions are assessed for compilation errors,
test failures, and new maintainability problems. Llama with
few-shot prompting successfully fixed 44.9% of the methods,
while Copilot Chat and Llama zero-shot fixed 32.29% and
30%, respectively. However, most solutions introduced errors or
new maintainability issues. We also conducted a human study
with 45 participants to evaluate the readability of 51 LLM-
generated solutions. The human study showed that 68.63% of
participants observed improved readability. Overall, while LLMs
show potential for fixing maintainability issues, their introduction
of errors highlights their current limitations.

Index Terms—maintainability, large language models, refac-
toring

I. INTRODUCTION

Code maintainability is important because it affects how
easily the code can be understood, changed, and improved
[L]. Poor maintainability can increase development costs,
reduce software quality [2], and lead to slower delivery of
new features [3]. Addressing maintainability issues involves
refactoring the code to improve its structure, readability, and
adherence to best practices. However, fixing maintainability
issues can be challenging, because a specialist review is
expensive and slow, while automated tools are imprecise and
require human interpretation [3]. Code smells are a common
type of maintainability issue, with examples including methods
that become complex and take on too many responsibilities,
code that is no longer used, or instances where the same code
snippets are repeated twice or more [4, |5} 6].

Recent advances in large language models (LLMs) have
generated much interest in their use for coding problems [7} (8}
9,110, 11]. These models have shown remarkable capabilities in
generating code, repairing bugs, and conducting software tests,

Eduardo Figueiredo
Federal University of Minas Gerais
Belo Horizonte, Brazil
figueiredo@dcc.ufmg.br

Fischer Ferreira
Federal University of Itajubd
Itajuba, Brazil
fischer.ferreira@unifei.edu.br

Larissa Rocha
State University of Bahia
Alagoinhas, Brazil
larissabastos @uneb.br

Geanderson Esteves
Federal University of Minas Gerais
Belo Horizonte, Brazil
geandersonesteves @ gmail.com

but using LLMs to refactor maintainability issues is under-
explored and lacks relevant data [12]. In contrast to traditional
automated tools that adhere to rigid rules, LLMs can provide
an innovative approach to addressing maintainability issues.
Their ability to understand complex contexts allows them to
generate flexible and adaptable solutions.

Furthermore, LLMs early investigations typically employ
controlled scenarios to measure LLM capabilities [13} [14} [15]
16]. Despite these initial results, it is essential to understand
the effectiveness of LLMs in addressing issues within real-
world software projects [[17, [18]]. This type of software projects
introduces numerous challenges for LLMs, including the need
to understand and navigate codebases, adhere to various
coding standards, and maintain compatibility with existing
systems. Therefore, it is crucial to investigate how LLMs can
resolve issues without introducing new errors or unintended
behavior [&, [10, 14} [19].

In this paper, we evaluate the effectiveness of using LLMs
to fix maintainability issues within Java methods. Our goal
is to understand which maintainability issues LLMs can fix
and where they fail. We aim to provide a comprehensive
assessment of the utility of LLMs in maintenance tasks.

To conduct our empirical study, we use SonarQube 10.3.0
[l to collect 127 instances of maintainability issues out of
10 GitHub Java projects, which have recent development
activity, strong community, and a test suite available. The
instances of the detected issues correspond to violations of
10 unique SonarQube rules. Then, we experiment with a
proprietary LLM, Copilot Chat (version 0.15.2 and an open-
source LLM, Llama 3.1 70B Instrucﬂ to fix the issues. We
employ a zero-shot approach for both LLMs and a few-shot
prompting approach for Llama to evaluate their performance
across different prompt configurations. We also conduct a

Uhttps://docs.sonarsource.com/sonarqube/latest/
Zhttps://tinyurl.com/vud9rnsf
3https://ai.meta.com/blog/meta-1lama-3- 1/

https://docs.sonarsource.com/sonarqube/latest/
https://tinyurl.com/vud9rnsf
https://ai.meta.com/blog/meta-llama-3-1/

human study involving 45 participants to evaluate the readabil-
ity of the LLM-generated successful solutions. By involving
human participants, we aim to capture qualitative insights that
complement the quantitative results of the LLMs performance.

Our results show that Llama with few-shot prompting fixed
more methods than Copilot Chat and Llama with zero-shot.
However, these configurations caused compilation errors and
test failures in several instances, and failed to fix some meth-
ods. Furthermore, Copilot Chat and Llama zero-shot intro-
duced new maintainability issues. Human evaluation showed
that most LLM-generated solutions were more readable than
the original code with maintainability issues.

Our study highlights the potential and limitations of LLMs
in fixing real-world software maintenance issues. Copilot Chat
and Llama showed limited effectiveness in fixing maintainabil-
ity issues in real-world projects, with a tendency to introduce
new problems. This underscores the need for continued human
oversight and further refinement of LLM capabilities.

In summary, this paper makes the following contributions:

1) Quantitative and qualitative analysis of LLM-generated
solutions comparing different prompting approaches (zero-
shot and few-shot) to fix maintainability issues.

2) Insights on the limitations of LLMs in fixing maintain-
ability issues, with code examples for common errors (see
[[V-A] and replication package).

3) A public dataset consisting of pairs of methods with
maintainability issues and their LLM-generated solutions,
created using three approaches, available for replication and
use in other experiments.

Replication Package. The online artifacts used in this study
are available at https://zenodo.org/records/13921292.

II. RELATED WORK

Correctness Evaluation of Copilot. Several previous empiri-
cal studies [8| [10} 20, 21] have aimed to evaluate Copilot’s
performance in software development tasks. For instance,
Nguyen and Nadi [5] empirically evaluated the correctness and
understandability of Copilot’s suggested code in four different
languages (Python, Java, JavaScript, and C) for 33 LeetCode
questions. Their results showed that Java suggestions had the
highest likelihood of being correct and that Copilot’s sugges-
tions have low cyclomatic and cognitive complexity (median
5 and 6, respectively). To repay self-admitted technical debts
(SATD), O’Brien et al. [8] relied on Copilot to automatically
generate 1,140 code bodies for TODO comments. From a dif-
ferent perspective, Pearce et al. [10] investigated the security
of Copilot’s code contributions and the conditions that cause
GitHub Copilot to recommend insecure code. In their context,
they found that up to 40% of Copilot-generated code could be
vulnerable. Unlike these published studies [10l 21]], our paper
focuses on whether and how Copilot solves maintainability
issues in actual software projects from GitHub.

Correctness Evaluation of Llama. Several studies have
compared the effectiveness of Llama with proprietary LLMs
[22, 123]. Jensen et al. [22]] evaluated the effectiveness of

proprietary and open-source LLMs for identifying code with
security vulnerabilities. The study used zero-shot prompting
to assess Llama 2’s effectiveness in providing detailed de-
scriptions of security vulnerabilities. Zhu et al. [23] assessed
the capabilities of Code Llama and other LLMs for code
summarization. In most cases, GPT-3.5 and GPT-4 produced
better results for Java, but sometimes Codel.lama outperforms
other LLMs for Python. When comparing different prompting
techniques, CodeLlama, when using few-shot prompting, had
better results compared to zero-shot learning in most cases.
Like these studies, our work compares proprietary and open-
source LLMS, including different prompting approaches, but
in the software maintainability context.

Evaluation of LLMs for Code Refactoring. Initial studies
evaluated the effectiveness of LLMs for code refactoring
[18} 24} 25]. Choi et al. [[18] propose an iterative project-level
code refactoring process to reduce complexity by identifying
the methods with the highest Cyclomatic Complexity and
performing refactoring on them using ChatGPT 3.5. The
results show that the average Cyclomatic Complexity is re-
duced with several iterations. Pomian et al. [24] propose a
tool named EM-Assist that utilizes ChatGPT 3.5 to generate
refactoring suggestions for methods that require the Extract
Method refactoring technique. The tool ranks the solutions
to provide developers with high-quality options. The results
demonstrate that EM-Assist achieves a recall rate of 53% to
fix complex methods. Shirafuji et al. [25] propose a method
to select the best-suited code refactoring examples used for
few-shot prompts to reduce Cyclomatic Complexity, using
ChatGPT 3.5. The results show that their method can reduce
the complexity. These studies are very focused on Cyclomatic
Complexity issues and Extract Method techniques. They also
focus on ChatGPT 3.5. Our study evaluates different types of
maintainability issues, refactoring techniques, and LLMs.

III. STUDY DESIGN

In this section, we present the design of our study, which
aims to evaluate the effectiveness of LLMs in addressing
maintainability issues. To identify these issues, we utilize
SonarQube, a tool that detects violations of predefined rules,
such as ”String literals should not be duplicated”. When a rule
is violated, SonarQube reports it as an issue. Maintainability
issues are categorized as a type of code smell by SonarQube
[26]. Our evaluation focuses on assessing the capability of
LLMs to fix different types of maintainability issues by
addressing the following research questions:

RQ1. To what extent can LLMs fix maintainability
issues? For each Java method that has maintainability issues
detected by SonarQube, we assess how many of these the
LLMs can fix. We assess not only whether the LLM fixed the
original issue, but also if the code passed the build process
and if no new maintainability issues were introduced.

RQ2. What are the main errors made by LLMs when
attempting to fix maintainability issues? We evaluate the be-
havior of LLMs in addressing different types of maintainability

https://zenodo.org/records/13921292

@— ©) GitHub @—

& GitHub Copilot

Collect and Use LLMs to Fix
Build Projects Issues
\ J \ Llama 3.1
g=) binaries @ 51 LLMs solutions
@—- sonarqQube @——\
Identi 0
Maintainaf{)ilit 2 Human
Issues Y g‘ Evaluation
~— o ~—
&) 2,446 issues R E readability rjesults&
— LLMs solutions
i)
Evaluate the
Select Issues

Results

Fig. 1. Steps to evaluate if LLM can automatically fix maintainability issues.

issues, highlighting the main refactoring techniques used and
the most common errors. For each maintainability category, we
provide a code example illustrating the most common mistake.

RQ3. To what extent do developers find LLM solutions
more readable? We assess the opinions of 45 participants by
comparing 51 pairs of methods. Each pair has methods with
maintainability issues and their LLM-generated solution.

Figure [I] shows the study steps, discussed in detail below
in the following subsections.

A. Step 1: Collect and Build Projects

Our goal in this study is to analyze how the LLMs fix
maintainability issues in real-world Java projects. To facilitate
our evaluation, these projects must have automated build
pipelines, such that we can automatically verify the LLM-
generated solutions. Accordingly, we randomly selected 10
open-source Java software projects hosted on GitHub that meet
the following criteria: (1) at least three quarters (75%) of its
code is in Java; (2) the project is actively maintained (for this,
we consider projects with updates from 2023 onwards); (3)
the project has broad recognition in the community (we select
software projects with at least 1,000 stars in GitHub); (4) the
project should have tests. We chose Java due to its widespread
use in both academia and industry [27, 28| 29], focusing on
Maven, a popular build system [30], as its logs help identify
compilation errors and test failures for our analysis.

B. Step 2: Identify Maintainability Issues

We use SonarQube to identify maintainability issues, as it
is one of the most widely used static analysis tools among
GitHub users and in the industry [31, 32, [33]]. To avoid
selecting issues specific to the Java language, we focus on
evaluating general maintainability rules that are common
across languages, enabling the study to be replicated in other
programming languages. We identify SonarQube rules shared
by the three most-used languages on GitHub (JavaScript,
Python, and Java) [29]], resulting in a total of 79 rules. We run
SonarQube on each of the 10 selected projects and collect all
violation{f] of these 79 rules, focusing only on the main source

4In this paper, rule violation and issue are used interchangeably.

TABLE I

PROJECTS WITH STUDY ISSUES STATISTICS AND POPULARITY
Projects and Versions #lssues Samples LOC Stars Contributors
Apollo 2.2.0 119 6 52k 29.1k 154
Byte Buddy 1.14.13 317 11 184k 6.2k 98
Google Java Format 1.21.0| 101 11 16k 5.6k 93
Google Jimfs 1.3.0 47 6 17k 2.4k 27
Google Guava 33.0.0 782 16 97k 50.1k 308
Google Guice 7.0.1 173 14 27k 12.5k 77
Jitwatch 1.4.9 365 24 84k 3.1k 32
Jsoup 1.18.1 171 19 32k 10.9k 108
Zxing 3.5.4 264 16 39k 32.7k 126
Webmagic 0.10.1 107 4 16k 11.4k 55

total | 2,446 127

code and excluding test code. Each reported issue contains (1)
the violated rule; (2) the file path with the issue and; (3) the
line in which the issue occurs.

Table [I] presents information on projects and the number
of issues evaluated in the study. The first column contains
the name of the repository and the version we analyzed. The
second column is the total number of maintainability issues in
the main source code when considering the 79 selected rules.
The third column is the number of issues we evaluated in the
study per the selection criteria we discuss in Section [[II-C| The
fourth column is the number of lines of code (disregarding
comments) of the projects. The fifth column is the number of
stars that the project had in 2024-10-11. The sixth column is
the number of project contributors in 2024-10-11.

C. Step 3: Select Issues

Table [[Il shows the details of the 127 selected issues and
the rules they violate. The first column contains the acronym
for each rule, which we use throughout the paper. The second
column contains the complete rule description and the third
column shows the number of samples per rule. The last column
shows the number of unique projects violating the rule.

We collected 2,446 maintainability issues detected in the
main source code of the 10 projects. For feasibility, we define
criteria to obtain representative samples: (1) randomness: for
each rule, we choose the issues randomly; (2) sample size:
as this is an exploratory study aiming to identify general
patterns, we consider a sample size with a confidence level
of 90%, allowing for a 7% margin of error; (3) minimum
filtering: for each type of rule, we consider only cases that
have at least 5 issues; (4) variability: each rule violation is
represented in at least 3 projects. Using these criteria, we are
left with a representative sample of 127 maintainability issues
that represent violations of 10 most frequent rules.

D. Step 4: Using an LLM to Fix Issues

We use two LLMs to address maintainability issues: GitHub
Copilot Chat and Meta Llama 3.1 70B Instruct. To evalu-
ate the effectiveness of LLMs, we used different prompting
approaches with zero-shot and few-shot learning. Zero-shot
learning occurs when the prompt is provided without any

TABLE II
DESCRIPTION OF THE 127 SELECTED MAINTAINABILITY ISSUES
Acronyms | Rules Issues Projects
Coverage
ccM Cognitive CqmpleXIty of methods should 2 9
not be too high
GET Generic exceptions should never be 13 6
thrown
MIS Merggable if statements should be 9 5
combined
cco gsftlons of code should not be commented 13 6
SLD | String literals should not be duplicated 19 7
TON | Ternary operators should not be nested 8 5
TUT | Track uses of "TODO” tags 16 6
Two branches in a conditional structure
TBS should not have exactly the same 5 3
implementation
UAR | Unused assignments should be removed 8 3
UMP Unused method parameters should be 10 5
removed
total 127

examples, while few-shot learning presents a limited number
of examples within the prompt [34]. The approaches are:
(1) Copilot Chat with zero-shot prompting; (2) Llama 3.1
70B Instruct with zero-shot prompting; (3) Llama 3.1 70B
Instruct with few-shot prompting. For brevity, we refer to these
approaches from now on as Copilot Chat, Llama zero-shot, and
Llama few-shot, respectively. Copilot Chat and Llama have
significantly different interfaces, so we distinctly experiment
with each.

Copilot Chat. Figure [2] shows the Copilot Chat dialog
and an example of the prompt that we use in the study. We
highlight the entire method by which SonarQube reported the
issue; this defines the context for Copilot Chat. We then insert a
request in the Copilot Chat dialog box using natural language:
“In this class, the method method_name has the following
issue rule_description. Can you identify and /fix it?”. The
method_name and rule_description are variables. The term
/fix is a slash command that informs Copilot Chat about our
intention of fixing the provided code. Most of the time, in
addition to the code suggestion, the Copilot Chat explains what
will be done. We register this explanation for analysis.

In this class, the method ‘protected boolean setFuture(ListenableFuture<? extends V>
future)® has the following issue *Cognitive Complexity of methods should not be too
high'. Can you identify and /fix it?
g B

& GitHub Copilot used /fix

To fix the issue of high cognitive complexity in the *setFuture’ method, | would extract the code block
responsible for adding the listener into a separate method.

Accept Discard

© Accept or Discard 1 change.

Fig. 2. Copilot Chat with a prompt example and solution explanation.

Llama 3.1-70B-Instruct. To use Llama 3.1 70B Instruct,
we use HuggingChaiE] because the model requires more than

Shttps://huggingface.co/chat/

140GB of VRAM.Unlike ChatGPTf’| a copied code must be
manually pasted into the project. We use the same prompt that
we use in Copilot Chat in Llama, but we also have to include
the snippet to be refactored in the prompt. The difference
between zero-shot and few-shot learning is that, in few-shot
learning, we provide three examples (inspired by [25, 35]]) of
code pairs, each consisting of the code with the issue and
its corresponding refactored version, within the prompt. The
few-shot examples were extracted from SonarQube documen-
tation and community contributions, and are included in the
replication package.

In general, proprietary LLMs like Copilot Chat outperform
open-source models [22| 23]. We use zero-shot on Copilot to
evaluate its effectiveness without examples. For Llama, we ap-
ply zero-shot to check if its performance would be inferior or
comparable to Copilot, and then use few-shot to see if Llama
could surpass it. This approach allowed for a direct comparison
between the two models and highlighted the potential of open-
source LLMs. We accept whatever suggestion was returned by
the LLMs, and then compile the project and run the tests. If
the project with the change compiles and tests successfully,
we submit it for a new analysis by SonarQube and record
whether the issue was fixed (disappeared) or if any new issues
appear, which we refer to as code degradation. SonarQube
outputs were evaluated by the authors, with doubts discussed
in meetings. The information of the original source code,
solution by LLM, compilation and test logs, and SonarQube
new analysis is available in the replication package.

Before the main experiment, we conducted a pilot study
analyzing the CK Metrics repository E] to evaluate if our study
design is feasible. Without further obstacles, we proceeded to
define the design of the human evaluation.

E. Step 5: Human Evaluation

Our goal is to have real developers evaluate the readability
of the LLM-generated solutions. We invited 45 participants,
comprising undergraduate and graduate (MSc and PhD) stu-
dents from the Computer Science department at our university,
to take part in this study, which was conducted as part of a
course project. To ensure adequate feedback on each solution,
we ensured that every solution was assessed by at least two
participants. For this user study, we considered only the LLM
solutions that successfully fixed the maintainability issues.
Accordingly, we randomly selected 51 samples out of Copilot
Chat, Llama zero-shot, and Llama few-shot to represent 9
categories of SonarQube rules. The only rule that was not
considered in this step was UMP because we obtained only
one successful LLM-generated solution from a single strategy.

For each selected method, we created a survey containing:
(1) a method pair with the original method (with maintain-
ability issues) and the LLM-modified version; (2) instructions
for the participant to assume the role of a GitHub repository
maintainer and choose the more readable method [36]]; and

Shttps://chatgpt.com/
7https://github.com/mauricioaniche/ck

https://huggingface.co/chat/
https://chatgpt.com/
https://github.com/mauricioaniche/ck

(3) a list of questions asking participants to (a) identify the
differences between the methods, (b) indicate which method
is more readable, and (c) justify their choice. Participants
could also consider the methods equivalent or state they could
not evaluate the differences between them. The order of the
original and LLM-generated codes presented was randomized.
After designing the surveyﬂ we conducted a pilot study with
two MSc students to assess whether the questions were clear.
Based on their feedback, we adjusted the survey text.

When conducting the study, we first briefly explained the
provided instructions of the study and read the survey ques-
tions to clarify any questions participants might have. We
collected for each method pair, the number of votes for each
method (original and LLM codes), cases when the methods
were judged as equivalent, and when the participant was not
able to give an opinion.

IV. EVALUATION

A. Effectiveness of an LLM in fixing maintainability issues

Figure 3| shows the results for the three LLM configurations.
The X-axis represents the status of the LLM solution: (1)
fixed: methods that were fixed by the LLMs without intro-
ducing any errors or failures; (2) not fixed: methods that were
neither fixed nor introduced errors or failures; (3) compilation
error: methods that caused compilation errors after the LLMs
changes; (4) test failure: methods that caused test failures
after the LLMs changes; (5) degraded: methods where new
maintainability issues were introduced after the LLMs changes
(6) no suggestion: methods for which the LLMs did not
suggest any fix.

From the 127 samples in the study, the best effectiveness in
fixing maintainability issues was achieved by the Llama few-
shot approach, which fixed 57 (44.9%) methods, followed by
Copilot Chat with 41 (32.29%) methods, and Llama zero-shot
with 38 (30%) methods. The worst result of not fixed comes
from Copilot Chat with 23 (18.11%) methods, followed by
Llama zero-shot with 22 (17.22%) methods and Llama few-
shot with 12 (9.44%) methods. Concerning the cases with
compilation errors, the worst case is the Llama zero-shot
approach with 42 (33%) methods, followed by Llama few-
shot with 37 (29.13%) methods, and Copilot Chat with 32
(25.2%) methods. Regarding LLM-generated solutions with
test failures, Llama zero-shot has 19 (15%) methods, Llama
few-shot has 18 (14.17%) methods, and Copilot Chat has 9
(7.08%) methods. Only Copilot Chat and Llama zero-shot have
degraded methods, 6 (4.72%) and 5 (4%) respectively. Finally,
in cases where LLMs did not suggest any solution, Copilot
Chat has 16 (12.6%) methods, Llama zero-shot (0.78%) has
1 method, and Llama few-shot has 3 (2.36%) methods.

8https://forms.gle/BMgzZNWBcQV32HYK?77

80 57
50
41 42
) 38 37
8 32
o
% * 2322 19
= 5 18 16
12
9
10 6 5 3
[o |l
0 1 —m
Fixed Not fixed Compilation Testerror Degraded No
error suggestion
OCopilot Chat Ollama 3.1 70B m@Llama 3.1 70B (few-shat)

Fig. 3. The result of fixing 127 methods with 3 LLMs aprroaches

Answer of RQ1: Our evaluation reveals that Llama few-
shot demonstrated the highest effectiveness in addressing
maintainability issues, successfully fixing 57 out of 127
methods (44.9%). In comparison, Copilot Chat and Llama
zero-shot fixed 41 (32.29%) and 38 (30%) methods, respec-
tively. Notably, in addition to the Llama few-shot yielding
the highest fixing rate, it also introduces fewer new main-
tainability issues compared to the other methods, indicating
its superior performance in both fixing existing problems and
maintaining code quality.

B. Refactoring Techniques and common LLM errors in main-
tainability fixes

Table |LLI| shows the results categorized by the 10 SonarQube
rules. The first column shows the status of the LLM solution.
The second column lists the LLMs and the approaches used
(zero-shot or few-shot). The remaining columns display the
acronyms of the rules, as shown in Table Each numeric
value represents the number of methods. We highlight some
results in each status in bold. We want to show a higher
number in the fixed status and a lower number in the other
statuses.

We analyzed 127 LLM-generated solutions out of the 3
strategies to evaluate the effectiveness of LLMs and to un-
derstand what types of refactoring techniques they use.

Hallucination in LLMs occurs when the model generates
incorrect or irrelevant information, creating responses that
appear plausible but are not grounded in real data [37]. This
concept is crucial for this section because we provide some
code examples to exemplify common errors when LLMs fail to
fix maintainability issues. Due to space limitations in the paper,
we use [...] to omit parts of the code that are not important
for the discussion. We present the snippet of the original code
and the refactored code immediately after the comments 7/
original’ and ’// LLM-generated solution’, respectively. We
now discuss our results.

The cognitive complexity of methods should not be too
high (CCM). This issue occurs when the method control flow
is hard to understand. We evaluated 26 methods that violated
the CCM rule. Copilot Chat shows the best effectiveness,
fixing 7 methods (26.9%), followed by Llama, which fixes
6 methods (23%) in both zero-shot and few-shot approaches.
The effectiveness rate is low. Only 2 (7.7%) methods are fixed

https://forms.gle/BMgzNWBcQV32HYK77

TABLE III
RESULTS OF FIXING 127 METHODS: COMPARISON OF ALL LLM APPROACHES BY RULE VIOLATION

Status LLM CCM GET MIS CCO SLD TON TUT TBS UAR UMP
Copilot Chat 7 3 4 9 3 6 4 2 3 0
Fixed Llama 3.1 70B (zero-shot) 6 4 5 6 5 5 2 3 1 1
Llama 3.1 70B (few-shot) 6 4 6 12 6 6 12 2 3 0
Copilot Chat 2 3 1 0 13 0 2 1 0 1
Not fixed Llama 3.1 70B (zero-shot) 1 3 2 4 5 0 1 1 4 1
Llama 3.1 70B (few-shot) 0 1 1 1 6 0 0 1 2 0
Copilot Chat 11 3 3 1 0 2 3 0 1 8
Compilation error Llama 3.1 70B (zero-shot) 11 4 1 3 4 2 9 0 1 7
Llama 3.1 70B (few-shot) 15 7 1 0 2 1 0 0 2 9
Copilot Chat 4 0 1 0 0 0 0 1 3 0
Test failure Llama 3.1 70B (zero-shot) 7 1 1 0 3 1 4 1 0 1
Llama 3.1 70B (few-shot) 5 1 1 0 4 1 3 2 1 0
Copilot Chat 1 1 0 0 2 0 2 0 0 0
Degraded Llama 3.1 70B (zero-shot) 1 1 0 0 1 0 0 0 2 0
Llama 3.1 70B (few-shot) 0 0 0 0 0 0 0 0 0 0
Copilot Chat 1 3 0 3 1 0 5 1 1 1
No suggestion Llama 3.1 70B (zero-shot) 0 0 0 0 1 0 0 0 0 0
Llama 3.1 70B (few-shot) 0 0 0 0 1 0 1 0 0 1

by all strategies, and at least one LLM fixed 10 (38.46%) .
methods. Regarding the refactoring strategies used to fix the
issue, Copilot Chat uses the Extract Method [4] 6 times and i
Split Conditional [4]] once, while Llama zero-shot and few- °
shot use the Extract Method every time. Concerning failed :
cases, the most common type is compilation error, with 15 #
occurrences in Llama few-shot and 11 in the other approaches. o
The most frequent compilation errors are: Cannot find symbol, "
Incompatible types, and Element is already defined. Code :i
shows an example where the Extract Method refactoring tech- 4
nique was applied to the put method, creating new methods, 5
including overwriteEntry. Note that in the original method, !¢
the variable prev is declared as a DirectoryEntry, while in N
the LLM-generated solution, prev has become an attribute of
the DirectoryEntry object. This example illustrates a common ’
type of wrong logic interpretation caused by LLMs when 2
attempting to fix CCM issues. Another important observation Z
is the high number of LLM-generated solutions that change
the method behavior for CCM: 7, 5, and 4 for Llama zero-shot, Zz
Llama few-shot, and Copilot zero-shot, respectively. These
errors suggest that LLMs struggle to maintain the context and
dependencies when moving code elements.

Generic exceptions should never be thrown (GET).
This issue occurs when the method throws generic exceptions
instead of specific ones. We evaluated 13 methods that violated
the GET rule. Llama has the best effectiveness for zero-shot
and few-shot approaches, both fixed 4 (30.7%) methods, while
Copilot Chat fixed 3 (23%) methods. Like in CCM, the effec-
tiveness rate is still low. Only 2 (15.3%) methods are fixed by
all strategies, and at least one LLM fixes 6 (46.1%) methods.
All method fixes use the Change Thrown Exception Type
[38] refactoring technique, with one exception that uses Add
Thrown Exception Type [|39] by creating two exception classes.

// Oric 1:
private void put (DirectoryEntry entry, boolean
overwriteExisting) {
DirectoryEntry prev = null;
..]
prev = curr;
[...]

(prev

—

if != null) {
prev.next = entry;

}
}

// LLM-generated solution:
private void put (DirectoryEntry entry, boolean
overwriteExisting) {

[...]

overwriteEntry (existingEntry, entry);

[...]

—

}

0 private void overwriteEntry(DirectoryEntry existingEntry,

<+ DirectoryEntry newEntry) {
[...1]
if (existingEntry.prev!= null) {
existingEntry.prev.next = newEntry;

Code 1: CCM example of hallucination.

Cases that use Change Thrown Exception Type change Run-
timeException for IllegalStateException. Most failed cases are
caused by compilation errors, specifically when LLM changes
the signatures with the throws command (most common in
Llama few-shot) and when using exceptions without importing
their classes. Llama few-shot, Llama zero-shot, and Copilot
Chat have 7 (53.8%), 4 (30.7%) and 3 (23%) LLM-generated
solutions classified as compilation error, respectively. To use
LLMs to fix GET issues, developers should specify their
exceptions, indicate what type of refactoring they want to use

// Original:

if ((sawNewlines && isComment (text)) ||
wanted.wanted () .orElse (sawNewlines)) {

++newlinesPending;

}

—

// LLM-generated solution:

if (sawNewlines | isComment (text) |
wanted.wanted () .orElse (false)) {

++newlinesPending;

}

—

Code 2: MIS example of hallucination.

(whether to add or change the exception type), instruct the
prompt not to change method signatures, and be careful about
importing new classes.

Mergeable if statements should be combined (MIS).
This issue occurs when a method has excessive nested con-
ditionals, increasing the code complexity and merge conflict
resolution [40]. We evaluated 9 methods that violated the
MIS rule. The effectiveness of the LLMs in fixing these
cases is as follows: 6 methods (66.7%) for Llama few-shot, 5
methods (55.6%) for Llama zero-shot, and 4 methods (44.4%)
for Copilot Chat. Only 4 methods (44.4%) were fixed by
all strategies, while at least one LLM successfully fixed 7
methods (77.8%). All successful solutions generated by the
LLMs use the Consolidate Conditional Expression refactoring
[4]. Compilation errors and test failures occur when LLMs
hallucinate. Code [2| shows an example of Llama zero-shot
hallucination, because it changes the fallback logic from
using sawNewlines to always using false, altering the original
behavior, causing test failure. The best way to fix MIS using
LLMs is through an iterative approach [18|] combined with
automated tests to avoid compilation errors and ensure the
correct method behavior.

Sections of code should not be commented out (CCO).
This issue occurs when the method contains commented-out
code, which makes it difficult to read. We evaluated 13 meth-
ods that violate the CCO rule. Llama few-shot and Copilot
Chat demonstrate good effectiveness in addressing this issue,
fixing 12 methods (92.3%) and 9 methods (69%), respectively.
Both prioritize using Removing Comment refactoring to fix
the problem. On the other hand, Llama zero-shot sometimes
uncomments the code or attempts to implement it. As a result,
it fixed only 6 methods (46.1%). Code [3] shows an example
where Llama zero-shot implements the commented code. In
this case, the LLM-generated solution included a new method
named previousMean, called within the method, changing the
code logic. These errors do not occur in Llama few-shot, as
the examples in the few-shot explicitly instruct the deletion of
the comment to fix the CCO issue. To fix CCO using LLMs,
a few-shot with examples of comments removal, followed by
instructions not to implement commented-out code, is enough.
Our study, along with other studies [8]], show that LLMs are
still not successful at implementing code from comments.

String literals should not be duplicated (SLD). This issue
occurs when a constant is used as a string multiple times in
a method. We evaluated 19 methods that violate the SLD

solution:
public double previousMean() {
if (count() > 1) {
return (sum()
} else {
return 0;

//LLM-generated

- getLast()) /

Code 3: CCO example of hallucination.

rule. The most common refactoring technique to fix SLD
used by LLMs is Extract Constant [41]. The number of fixed
methods for the Llama zero-shot and few-shot scenarios, 5 and
6 respectively, is equal to the number of methods not fixed.
The results are worse for Copilot Chat, with 3 fixed methods
and 13 not fixed. The identification of the violation of SLD by
SonarQube generates some disagreements about false positives
within the SonarQube communityﬂ This is the only rule with
at least one LLM response labeled as no suggestion. A Llama
output reports “the issue is not in the provided code snippet”.
This is the behavior we expect for false-positive cases, but
instead, LLMs often generate uncommon suggestions, even
for these cases, causing hallucinations. For example, Code E]
shows strings in the original code labeled as SLD issue by
SonarQube, but each word appears only once in the method.
The LLM output reports that “I extract the repeated string
literal into a constant DUPLICATE_FIELD MESSAGE”, but
we notice that this constant does not exist in the LLM-
generated solution. Instead, it creates a message variable,
and upon secondary analysis, the SLD issue remains. Table
provides the values of all results. From this and other
similar examples, and the number of not fixed methods, we
assume that LLMs interpret the SLD issue differently than
SonarQube. An approach to be tested would be to apply
prompt engineering that specifies the need to count the number
of repeated strings and request the creation of global variables
only for those that exceed a developer-defined limit.

Ternary operators should not be nested (TON). This
issue occurs when ternary operators are hard to read and
can make the order of operations complex to understand. We
evaluate 8 methods that violate the TON rule. Copilot Chat
and Llama few-shot fixed 6 (75%) methods and Llama zero-
shot fixed 5 (62.5%) methods. The LLM-generated solutions
use Decompose Conditional [4] for refactoring TON issues.
Code [5] shows an example of Decompose Conditional used
by Llama few-shot. Compilation and test errors are caused
by the difficulty in interpreting logic and rewriting code by
the LLMs. Like for CCM and MIS, an iterative approach,
followed by automated tests, are imporant to use LLMs for
TON refactoring.

9https://community.sonarsource.com/t/java-duplicated- string-literals/46443

https://community.sonarsource.com/t/java-duplicated-string-literals/46443

1
2
3

10
11
12

13
14

o I SRR

// Original:
else {

throw new IllegalStateException("Field " +

3
Track uses of TODO tags (TUT). This issue occurs ;‘
when the method contains TODO commented-out code, which ¢
makes it difficult to read. We evaluate 16 methods that violate ;
the TUT rule. The three approaches have different behaviors ,
for this type of issue. Copilot Chat fixed 4 (25%) methods, did :"
not suggest any solution for 5 (31.2%) methods, and degraded ,,
the code when tried to fix 2 (12.5%) methods. Code [6] shows :j
an example of code degradation where Copilot Chat did not fix s
the TUT issue and created an empty conditional, adding a new :(7’
issue. Llama zero-shot tried to implement the TODO comment
in most cases because that caused 9 (56.2%) compilation
errors, 4 (25%) test failures, and only 2 (12.5%) fixed methods.
The examples of few-shot adopt delete the comment as TUT
solution, then Llama few-shot has the best effectiveness with
12 (75%) fixed methods. As with CCO, a few-shot approach
with examples of comment removal, followed by instructions
not to implement commented-out code, could be a better
option for fixing TUT issues.

Two branches in a conditional structure should not have
exactly the same implementation (TBS). This issue occurs
when the same code is duplicated in two or more separate
branches of a conditional. We evaluate 5 methods that violate
the TBS rule. Llama zero-shot fixed 3 methods and the others
2 methods. The most successful refactoring is Consolidate
Conditional Expression [4]. The LLMs struggled to understand
the conditional logic, resulting in some not fixed and test
failure cases. In the original Code [/} return anythingElse(t,
th); repeat twice. Then, Llama few-shot removes the first
conditional. But, the LLM removed a condition that checks
if the EndTag is in BeforeHtmlToHead, redirecting the code
to the else if (t.isEndTag()) block. This changes the intended
logic and may lead to incorrect error handling. To refactor TBS
using LLMs, it could be treated as a code clone problem. There

v //

n't break after here for r‘onsis!’mz:‘y

V1 etc.
builder.breakToFill ();
builder.open (ZERO) ;
scan (ex, null);
builder.close();

— token.getName (
+ " for " + this 4
+ " already mapped to " + previous 5
+ " and not " + wvalue); 6
} 7
8
// LLV 9
else { 10 // LL
String fieldName = token.getName () ; 1
String message = String.format ("Field '$s' for %s 12
< already mapped to %s and not %s", fieldName, this, e, e
— previous, value); 13 builder.breakToFill ();
throw new IllegalStateException (message); 14 builder.open (ZERO) ;
} 15 scan (ex, null);
16 builder.close();
Code 4: SLD example of hallucination. 17
18
, - 19
// Original: 20
size += (characterLength / 2) » 11; 21
size += (characterLength % 2) == 1 2 6 : 0; »
23
// LLM-generated solution: 2
size += (characterLength / 2) = 11;
if ((characterLength % 2) == 1) {
size += 6;
}
1
Code 5: TON example of LLM-generated solution. 2

[...]

// Track uses of

Block

TODO tags
() .to

tracKkin

) .contains ("TODO")) {

if (node.g

// Per

Code 6: TUT example of hallucination.

// Ot nal:

(t.isEndTag ()

&&

else if
(inSorted(t.asEndTag (
BeforeHtmlToHead))) {
return anythingElse (t,
} else if (t.isEndTag()) {

tb.error (this);

return false;
} else {

return anythingElse (t,

s) .normalName ()

AN
th);

tb) ;
}

LLM-generated

else if (t.isEndT
tb.error (this);
return false;

} else {

return anythingElse(t, tb);

}

Code 7: TBS example of hallucination.

are prompt-based approaches [42]] and fine-tuning methods
[43]], but they need to be explored in the context of TBS.

Unused assignments should be removed (UAR). This
issue occurs when the method contains dead stores, which are
unnecessary assignments that reduce code clarity and waste
resources [44] . We evaluate 8 methods that violate the UAR
rule. Copilot Chat and Llama few-shot have the best effective-
ness with 3 (37.5%) fixed methods, if compared with Llama
zero-shot with 1 (12.5%) fixed method. The LLMs use Remove
Dead Code [4] for UAR. These results are limited. LLMs have
difficulties with deep logical reasoning and sometimes delete
assignments without UAR issues. Code [§] shows an example
where afterFirstToken attribute was deleted and the conditional
was changed, causing a compilation error. Our advice is to use
automated tests and iterative approaches, like for CCM, MIS,
TON issues.

Unused method parameters should be removed (UMP).
This issue occurs when the method contains unused method
parameters (UMP), which do not contribute to the functionality
and can hinder code readability. We evaluate 10 methods that

1
2
3
4
5

Answers

1
0 I

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

i

{1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

Method pair Id

@originalmethod OLLM solution mequivalent

Fig. 4. Comparisons of answers by methods

// Original:

boolean afterFirstToken = false;

[...]

if (afterFirstToken) {
builder.breakOp (INDEPENDENT,
< Optional.of (breakBeforeType)) ;

} else {
afterFirstToken = true;

}

non
’

ZERO,

// LLM-gene

if (!typeAnnotations.i

rated sol

mpty () ||

— !node.getTypeParameters () .isEmpty()) {
builder.breakOp (INDEPENDENT,
< Optional.of (breakBeforeType));

}

non
’

ZERO,

Code 8: UAR example of hallucination.

public ImmutableMap<String,
— 7> userDefaults) {
return ImmutableMap.of ();

?> defaultValues (Map<String,

}

// LLM-generated solution:
public ImmutableMap<String, ?> defaultValues (Map<String, ?>
<« userDefaults) {
return ImmutableMap.<String,
.putAll (userDefaults)

Jouild();

Object>builder ()

Code 9: UMP example of LLM-generated solution.

violate the UMP rule. The LLMs use Remove Dead Code
[4] for UMP. The majority of LLM-generated solutions result
in compilation errors because they change the signature of
a method, causing errors in calls from other parts of the
code. The error was already expected, as LLMs do not have
an overview of the entire system. However, there was an
exception where the UMP issue was fixed. Code [9] shows the
LLM-generated solution where the method implements the use
of a parameter that was not previously used. It is important to
note that there were no failures in the tests, as the parameter
may always receive blank values, but the behavior of both
methods is not the same, even though the issue has been fixed.
LLMs like Copilot Chat and Llama are not capable of acting
at the project-level [45], and fixing UMP without this type of
resource becomes unfeasible.

Answer of RQ2: LLMs often make errors in code refac-
toring, such as generating solutions that lead to compilation
failures. They also change the method behavior, especially
with complex methods. Furthermore, they introduce irrele-
vant constants or variables, which highlights their limitations
in handling refactorings accurately.

C. Readability for LLM solutions

We evaluate the readability of the LLM’s solutions by
asking 45 participants to rate the readability of 51 solutions.
We got 153 ratings in total. Among these 153 ratings: (1) 44
(28.76%) rated the original methods as more readable than the
LLM’s fixed version; (2) 91 (59.48%) rated the LLM’s fixed
version as more readable than the original method; (3) 18
(11.76%) considered both versions of the method equivalent;
and (4) no one answer I don’t know.

Figure [] provides the detailed votes for each of the 51
comparisons. The X-axis represents the method pair ID, and
the Y-axis represents the number of answers that voted for
a given code, as described in the legend. Since we have at
least two participants’ rates for each solution, we also analyze
the most voted choice for each compared pair (i.e., had the
majority vote). Out of the 51 solutions, participants found the
LLM fixed version of the code more readable in 35 cases
(68.63%) while the original version of the code received the
majority of votes in 7 cases (13.73%). Participants found no
difference in readability between both versions of the code for
4 cases (7.84%) while 5 (9.80%) other cases were a draw.

Table [Vl shows how often an answer is the most chosen in a
comparison (organized by rules). From this point of view, the
LLM solution answer is the most readable for 8§ rules, in the
other 1 rule original method is the most readable. Regarding
the readability performance of each LLM, Copilot Chat had 16
pairs of methods evaluated, with the LLM-generated solution
being chosen 14 times, and the original method chosen twice.
Llama (zero-shot) had 17 pairs of methods assessed, with the
LLM-generated solution chosen 12 times, equivalent answered
3 times, and the original method chosen twice. Llama (few-
shot) had 18 pairs of methods analyzed, with the LLM-
generated solution preferred 9 times, a draw occurring 5
times, the original method chosen 3 times, and an equivalent
preference between the methods once.

TABLE IV
NUMBER OF TIMES WHEN AN OPTION WINS A COMPARISON BY THE RULES

rules |original method LLM solution equivalent draw
CCM 0 6 0 0
GET 1 3 0 1
MIS 1 5 0 0
CCO 2 3 0 1
SLD 0 4 1 1
TON 0 5 0 1
TUT 3 1 2 0
TBS 0 5 0 0
UAR 0 3 1 1
TOTAL 7 35 4 5

Answer of RQ3: Out of 51 pairs of methods evaluated by 45
developers, 35 (68.63%) considered the method with LLM
solution more readable than the original method, while 7
(13.73%) found the original method more readable. Addi-
tionally, 5 (7.84%) deemed both methods equivalent, and
in 5 (9.80%) cases, the comparison resulted in a draw.
Copilot Chat has the more readable LLM-generated solutions,
followed by Llama zero-shot and Llama few-shot.

V. THREATS TO VALIDITY

Internal Validity. Internal validity concerns factors that
could affect the results of our study without our knowledge.
One primary concern is the use of two LLM tools, Copilot
Chat and Llama 3.1 70B Instruct, for our analysis. Specific
limitations or inherent biases in Copilot Chat and Llama
3.1 may influence our findings. Furthermore, the evaluation
criteria and the method of assessing code maintainability might
introduce subjective biases. Although we employed Sonar-
Qube for an objective measure of code quality and included
multiple evaluators in the assessment process, differences in
evaluators’ experience and interpretation could still impact
the results. Additionally, it is important to note that we lack
visibility into the inner workings of Copilot Chat and Llama
3.1, adding an element of uncertainty to our analysis.

Additionally, the experimental setup, including the selection
of maintainability issues and the criteria for success, may
affect the outcomes. For instance, the decision to focus on
specific SonarQube rules could introduce bias if these rules do
not represent a comprehensive view of code maintainability.
The potential for human error in interpreting and applying
these rules during the evaluation process is another factor
that could influence the internal validity of our study. Also,
the prompt build for this study might introduce bias, as it
attempted to emulate a developer’s interaction with the tool,
typically not employing more advanced techniques in its input.

External Validity. External validity addresses the extent to
which our findings can be generalized beyond the specific
context of our study. Our dataset comprised a selection of
Java projects, which may limit the applicability of our results
to other programming languages or types of software projects.
To address this, we chose a diverse set of Java projects,

10

aiming to cover different application domains and coding
styles. The Java language also demonstrated good performance
in studies using LLM [21]. However, future studies should
include other programming languages and project types to
enhance generalizability.

Moreover, the context in which the LLM was used (in-
tegrated within an IDE and prompted to fix specific issues)
may not reflect other potential use cases of LLMs in software
development. We attempted to replicate a realistic development
environment but acknowledged that different settings and user
interactions could lead to different outcomes. We selected
Copilot Chat and Llama 3.1 due to their prominence in
previous research and extensive training by OpenAl, Meta, and
GitHub. These LLMs represent a state-of-the-art tool widely
used in practice. To mitigate the impact of this choice, we
carried out a study with human evaluations and maintained
a critical perspective on Copilot and Llama performance
throughout the study. Encouraging further studies in various
environments and with different developer expertise levels will
help validate our findings more broadly.

Reliability. Reliability concerns the consistency of our
results. If the study were repeated under similar conditions,
it should yield comparable results. The variability in Copilot
Chat and Llama suggestions and the subjective nature of some
evaluations could affect reliability. We mitigated this by stan-
dardizing the evaluation process, using a consistent dataset,
and documenting our methodology. This ensures that future
researchers can replicate our setup and obtain similar results.
Additionally, the reproducibility of our results is dependent
on the specific version of the tools and datasets used. To
address this, we archived the versions of Copilot Chat, Llama,
SonarQube, and the datasets used in our study, providing a
reference for future studies. This approach helps maintain
consistency even as tools and environments evolve.

VI. CONCLUSIONS AND FUTURE WORK

This paper evaluated the effectiveness of LLMs in fixing
maintainability issues by mining 127 methods with issues,
corresponding to 10 SonarQube rules, from 10 GitHub repos-
itories. Llama few-shot fixed 57 (44.9%) out of 127 meth-
ods, the Copilot Chat 41 (32.29%) and Llama zero-shot 38
(30%). Furthermore, in our human evaluation study, 68.6%
of developers considered the LLM solutions more readable
compared to the original methods. We conclude that although
LLMs show potential in improving code readability and fixing
maintainability issues, their effectiveness is limited, and they
often introduce new errors or fail to fix maintainability issues.
In our study, LLM performance in addressing maintainability
issues fell short, but recent studies highlight fine-tuning as a
promising optimization strategy [46| |47, 48| 49]], which we
aim to explore in our research. We also plan to explore other
languages and different types of LLMs as part of these efforts.

Acknowledgements. This research was partially supported
by Brazilian funding agencies: CNPq (Grant 312920/2021-0),
CAPES, and FAPEMIG (Grant APQ-01488-24).

(1]

(2]

(3]

(4]
(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

REFERENCES

M. Riaz, E. Mendes, and E. Tempero, “A systematic re-
view of software maintainability prediction and metrics,”
in 3rd International Symposium on Empirical Software
Engineering and Measurement (ESEM), 2009, pp. 367—
377.

A. Santana, E. Figueiredo, J. Pereira, and A. Garcia, “An
exploratory evaluation of code smell agglomerations,”
Software Quality Journal (SQJ), 2024.

M. Schnappinger, A. Fietzke, and A. Pretschner, “Defin-
ing a software maintainability dataset: collecting, ag-
gregating and analysing expert evaluations of software
maintainability,” in IEEE International Conference on
Software Maintenance and Evolution (ICSME), 2020, pp.
278-289.

M. Fowler, Refactoring: improving the design of existing
code. Addison-Wesley Professional, 2018.

H. G. Nunes, A. Santana, E. Figueiredo, and H. Costa,
“Tuning code smell prediction models: A replication
study,” in Proceedings of the 32nd IEEE/ACM Interna-
tional Conference on Program Comprehension (ICPC),
2024.

A. Santana, J. A. Pereira, and E. Figueiredo, “Impact of
code smell agglomerations on code stability,” in Proceed-
ings of the 40th International Conference on Software
Maintenance and Evolution (ICSME), 2024.

N. Al Madi, “How readable is model-generated code?
examining readability and visual inspection of github
copilot,” in Proceedings of the 37th IEEE/ACM Interna-
tional Conference on Automated Software Engineering
(ASE), 2022, pp. 1-5.

D. OBrien, S. Biswas, S. M. Imtiaz, R. Abdalkareem,
E. Shihab, and H. Rajan, “Are prompt engineering and
todo comments friends or foes? an evaluation on github
copilot,” in Proceedings of the IEEE/ACM 46th Interna-
tional Conference on Software Engineering (ICSE), 2024,
pp. 1-13.

A. Mastropaolo, L. Pascarella, E. Guglielmi, M. Ciniselli,
S. Scalabrino, R. Oliveto, and G. Bavota, “On the robust-
ness of code generation techniques: An empirical study
on github copilot,” in IEEE/ACM 45th International
Conference on Software Engineering (ICSE), 2023, pp.
2149-2160.

H. Pearce, B. Ahmad, B. Tan, B. Dolan-Gavitt, and
R. Karri, “Asleep at the keyboard? assessing the security
of github copilot’s code contributions,” in /EEE Sympo-
sium on Security and Privacy (S&P), 2022, pp. 754-768.
J. Y. Khan and G. Uddin, “Automatic code documen-
tation generation using gpt-3,” in Proceedings of the
37th IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2022, pp. 1-6.

K. Li, Q. Hu, J. Zhao, H. Chen, Y. Xie, T. Liu,
M. Shieh, and J. He, “Instructcoder: Instruction tuning
large language models for code editing,” in Proceedings
of the 62nd Annual Meeting of the Association for

11

Computational Linguistics (Volume 4: Student Research
Workshop), 2024, pp. 50-70.

R. Tufano, S. Masiero, A. Mastropaolo, L. Pascarella,
D. Poshyvanyk, and G. Bavota, “Using pre-trained mod-
els to boost code review automation,” in Proceedings of
the 44th International Conference on Software Engineer-
ing (ICSE), 2022, pp. 2291-2302.

A. M. Dakhel, V. Majdinasab, A. Nikanjam, F. Khomh,
M. C. Desmarais, and Z. M. J. Jiang, “Github copilot ai
pair programmer: Asset or liability?” Journal of Systems
and Software (JSS), vol. 203, p. 111734, 2023.

C. Dantas, A. Rocha, and M. Maia, “Assessing the
readability of chatgpt code snippet recommendations:
A comparative study,” in Proceedings of the XXXVII
Brazilian Symposium on Software Engineering(SBES),
2023, p. 283-292.

Z. Liu, Y. Tang, X. Luo, Y. Zhou, and L. F. Zhang,
“No need to lift a finger anymore? assessing the quality
of code generation by chatgpt,” IEEE Transactions on
Software Engineering (TSE), 2024.

D. Nam, A. Macvean, V. Hellendoorn, B. Vasilescu, and
B. Myers, “Using an llm to help with code understand-
ing,” in Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering (ICSE), 2024, pp.
1-13.

J. Choi, G. An, and S. Yoo, “Iterative refactoring of
real-world open-source programs with large language
models,” in International Symposium on Search Based
Software Engineering. Springer, 2024, pp. 49-55.

Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii,
Y. J. Bang, A. Madotto, and P. Fung, “Survey of halluci-
nation in natural language generation,” ACM Computing
Surveys, vol. 55, no. 12, pp. 1-38, 2023.

O. Asare, M. Nagappan, and N. Asokan, “Is github’s
copilot as bad as humans at introducing vulnerabilities in
code?’ Empirical Software Engineering (EMSE), vol. 28,
no. 6, p. 129, 2023.

N. Nguyen and S. Nadi, “An empirical evaluation of
github copilot’s code suggestions,” in Proceedings of
the 19th International Conference on Mining Software
Repositories (MSR), 2022, p. 1-5.

R. I. T. Jensen, V. Tawosi, and S. Alamir, “Software
vulnerability and functionality assessment using llms,”
in 2024 IEEE/ACM International Workshop on Natural
Language-Based Software Engineering (NLBSE). 1EEE,
2024, pp. 25-28.

J. Zhu, Y. Miao, T. Xu, J. Zhu, and X. Sun, “On the
effectiveness of large language models in statement-level
code summarization,” in 2024 IEEE 24th International
Conference on Software Quality, Reliability and Security
(ORS). 1EEE, 2024, pp. 216-227.

D. Pomian, A. Bellur, M. Dilhara, Z. Kurbatova, E. Bo-
gomolov, A. Sokolov, T. Bryksin, and D. Dig, “Em-assist:
Safe automated extractmethod refactoring with 1lms,” in
Companion Proceedings of the 32nd ACM International
Conference on the Foundations of Software Engineering,

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

2024, pp. 582-586.

A. Shirafuji, Y. Oda, J. Suzuki, M. Morishita, and
Y. Watanobe, “Refactoring programs using large lan-
guage models with few-shot examples,” in 2023 30th
Asia-Pacific Software Engineering Conference (APSEC).
IEEE, 2023, pp. 151-160.

“What is a code smell?” https://www.sonarsource.com/
learn/code-smells/, 2024, access: Oct 2nd, 2024.

Z. Zeng, Y. Wang, R. Xie, W. Ye, and S. Zhang,
“Coderujb: An executable and unified java benchmark
for practical programming scenarios,” in Proceedings of
the 33rd ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2024, pp. 124-136.
C.-Y. Su, A. Bansal, V. Jain, S. Ghanavati, and C. McMil-
lan, “A language model of java methods with train/test
deduplication,” in Proceedings of the 31st ACM Joint Eu-
ropean Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2023, pp.
2152-2156.

“The top programming languages,” |https://octoverse.
github.com/2022/top-programming-languages, 2024, ac-
cess: Oct 2nd, 2024.

F. Hassan, S. Mostafa, E. S. Lam, and X. Wang, “Auto-
matic building of java projects in software repositories: A
study on feasibility and challenges,” in ACM/IEEE Inter-
national Symposium on Empirical Software Engineering
and Measurement (ESEM), 2017, pp. 38—47.

D. Marcilio, R. Bonifacio, E. Monteiro, E. Canedo,
W. Luz, and G. Pinto, “Are static analysis violations re-
ally fixed? a closer look at realistic usage of sonarqube,”
in IEEE/ACM 27th International Conference on Program
Comprehension (ICPC), 2019, pp. 209-219.

C. Vassallo, S. Panichella, F. Palomba, S. Proksch,
A. Zaidman, and H. C. Gall, “Context is king: The
developer perspective on the usage of static analysis
tools,” in IEEE 25th International Conference on Soft-
ware Analysis, Evolution and Reengineering (SANER),
2018, pp. 38-49.

C. Vassallo, F. Palomba, A. Bacchelli, and H. C. Gall,
“Continuous code quality: Are we (really) doing that?”
in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering (ASE),
2018, pp. 790-795.

Y. Wang, Q. Yao, J. T. Kwok, and L. M. Ni, “Generaliz-
ing from a few examples: A survey on few-shot learning,”
ACM computing surveys (csur), vol. 53, no. 3, pp. 1-34,
2020.

S. Gao, X.-C. Wen, C. Gao, W. Wang, H. Zhang, and
M. R. Lyu, “What makes good in-context demonstra-
tions for code intelligence tasks with 1lms?” in 2023
38th IEEE/ACM International Conference on Automated
Software Engineering (ASE). 1EEE, 2023, pp. 761-773.
K. Constantino, F. Belem, and E. Figueiredo, “Dual anal-
ysis for helping developers to find collaborators based on
co-changed files: An empirical study,” Software: Practice
and Experience (SPE), 2023.

12

[37]

[44]

[45]

[49]

J.-Y. Yao, K.-P. Ning, Z.-H. Liu, M.-N. Ning, and
L. Yuan, “Llm lies: Hallucinations are not bugs,
but features as adversarial examples,” arXiv preprint
arXiv:2310.01469, 2023.

B. A. Muse, F. Khomh, and G. Antoniol, “Refactoring
practices in the context of data-intensive systems,” Em-
pirical Software Engineering, vol. 28, no. 2, p. 46, 2023.
S. Shafig, W. K. Assuncdo, A. Mashkoor, C. Mayr-Dorn,
and A. Egyed, “Towards recommending refactoring oper-
ations based on bugs,” Available at SSRN 4397230, 2024.
G. Vale, C. Hunsen, E. Figueiredo, and S. Apel, “Chal-
lenges of resolving merge conflicts: A mining and sur-
vey study,” IEEE Transactions on Software Engineering
(TSE), 2021.

Jetbrains, “Jetbrains - code refactoring,” https:/www.
jetbrains.com/help/phpstorm/extract-constant.html, 2024,
access: Oct 2nd, 2024.

Z. Xian, C. Cui, R. Huang, C. Fang, and Z. Chen, “zs-
Ilmcode: An effective approach for functional code em-
bedding via llm with zero-shot learning,” arXiv preprint
arXiv:2409.14644, 2024.

R. Inoue and Y. Higo, “Improving accuracy of llm-
based code clone detection u sing functionally equivalent
methods,” in 2024 IEEE/ACIS 22nd International Con-
ference on Software Engineering Research, Management
and Applications (SERA). 1EEE, 2024, pp. 24-27.

G. Santos, A. Santana, G. Vale, and E. Figueiredo,
“Yet another model! a study on model’s similarities for
defect and code smells,” in Proceedings of the 26th
International Conference on Fundamental Approaches to
Software Engineering (FASE), 2023.

Y. Qin, S. Wang, Y. Lou, J. Dong, K. Wang, X. Li, and
X. Mao, “Agentfl: Scaling llm-based fault localization to
project-level context,” arXiv preprint arXiv:2403.16362,
2024.

J. Li, A. Sangalay, C. Cheng, Y. Tian, and J. Yang, “Fine
tuning large language model for secure code generation,”
in Proceedings of the 2024 IEEE/ACM First Interna-
tional Conference on Al Foundation Models and Software
Engineering, 2024, pp. 86-90.

A. Z. Yang, C. Le Goues, R. Martins, and V. Hel-
lendoorn, “Large language models for test-free fault
localization,” in Proceedings of the 46th IEEE/ACM In-
ternational Conference on Software Engineering (ICSE),
2024, pp. 1-12.

Z. Ma, A. R. Chen, D. J. Kim, T.-H. P. Chen, and
S. Wang, “Llmparser: An exploratory study on using
large language models for log parsing,” in Proceedings
of the 46th IEEE/ACM International Conference on Soft-
ware Engineering (ICSE), 2024.

J. Hoffmann and D. Frister, “Generating software tests
for mobile applications using fine-tuned large language
models,” in Proceedings of the 5th ACM/IEEE Interna-
tional Conference on Automation of Software Test (AST),
2024, pp. 76-77.

https://www.sonarsource.com/learn/code-smells/
https://www.sonarsource.com/learn/code-smells/
https://octoverse.github.com/2022/top-programming-languages
https://octoverse.github.com/2022/top-programming-languages
https://www.jetbrains.com/help/phpstorm/extract-constant.html
https://www.jetbrains.com/help/phpstorm/extract-constant.html

	Introduction
	Related Work
	Study Design
	Step 1: Collect and Build Projects
	Step 2: Identify Maintainability Issues
	Step 3: Select Issues
	Step 4: Using an LLM to Fix Issues
	Step 5: Human Evaluation

	Evaluation
	Effectiveness of an LLM in fixing maintainability issues
	Refactoring Techniques and common LLM errors in maintainability fixes
	Readability for LLM solutions

	Threats to Validity
	Conclusions and Future Work

