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Abstract
Code smells are indicators of poor design choices in source code
which negatively impact software quality. While manual detec-
tion of code smells is time-consuming, their automated detection
requires high-quality datasets. This work evaluates an improved
version of the Madeyski Lewowski Code Quest (MLCQ), called
ImprovMLCQ, which incorporates an extensive list of features ex-
tracted with four tools: CK, PMD, Organic, and Designite; along
with several project characteristics. Our goal is to leverage these fea-
tures to gain deeper insights into the detection or four code smells
(Blob, Data Class, Feature Envy, and Long Method), assessing the
effectiveness of different Machine Learning and Deep Learning
models, and exploring the impact of feature selection on predictive
performance. We evaluate fifteen Machine Learning-based algo-
rithms and four Deep Learning algorithms using ImprovMLCQ,
leveraging various feature engineering and selection mechanisms
to optimize predictive performance. Our results show that the Extra
Trees and Random Forest classifiers achieved the highest F1-Score
among the tested algorithms, showing the importance of additional
features to improve prediction performance.
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1 Introduction
Code smells are symptoms of poor design and implementation
choices [9]. Several studies confirmed their negative consequences
on the maintenance and evolution of software systems [27, 28, 40].
Long methods and large classes are examples of smell’s symptoms,
indicating the need for refactoring. Refactoring consists of improv-
ing the code quality without changing its external behavior [9], e.g.,
by splitting methods or simplifying the code.

Although code smells can be detected manually [37], it is a time-
consuming task in large systems. Thus, several automated detection
tools have been proposed to help developers improve code qual-
ity [6, 25, 29–31, 35], exploiting different sources of information.
For instance, DECOR [25] uses lexical and structural properties
to identify smells. Palomba et al. [29] proposed a detection tech-
nique based on mining system history, and later, Palomba et al. [30]
proposed a technique based on textual information, such as com-
ments. In addition, several authors [6, 31, 35] proposed detection

techniques based on combinations of software metrics. However,
according to a systematic literature review in the area [42], their
use has limitations: (i) difficulties in specifying metrics thresholds;
(ii) code smells on specific metrics thresholds are often sensitive to
the developer’s perception; and (iii) a poor agreement in the tool’s
output.

Motivated by these limitations, our goal is to provide evidence
of the usefulness of Machine Learning (ML) and Deep Learning
(DL) models in detecting code smells, since both approaches un-
cover patterns in the data, i.e., they can identify which features are
aligned to the developer’s perception of the presence of smells. In
analyzing different models’ performances, we can identify which
model performs the best in different contexts. As a consequence,
developers can use the model that is best suited to their needs.

For our purpose, we used the dataset Madeyski Lewowski Code
Quest1 (MLCQ) [21], composed of 14 features and 15,000 code frag-
ments extracted from 523 industry-relevant Java projects, manually
labeled by experienced software developers. The experts labeled
the presence and severity of four code smells: Blob, Data Class, Fea-
ture Envy, and Long Method. However, due to the dataset focusing
on the expert feedback (classification and severity), we extended
the MLCQ dataset with new features that may help in the model
learning process. We call our dataset ImprovMLCQ. Our new fea-
tures are based on the output of (i) four state-of-the-art tools (CK
[3, 6], Organic [6], PMD [31], and Designite [35]), selected based on
their popularity [42]; (ii) features created using feature engineering
techniques, such as clustering results, to enhance the predictive ca-
pabilities of the dataset; (iii) project characteristics, such as number
of commits, code churn, file age, and change frequency.

To motivate the use of learning techniques in the field, we first
presented an analysis of the agreement rate between three detec-
tion tools (Organic, PMD and Designite) and the experts’ manual
classification on the MLCQ original dataset. We show the poor
capability of these tools in capturing the nuances of code smells
as perceived by experts, obtaining many False Negatives, for ex-
ample, Organic obtained 830 False Negatives, a number greater
than the True Positives in 120 code fragments. Designite is the tool
that detects the most code smell clusters. We also observed that
the largest number of clusters appeared in code snippets manually
labeled with class-level smells (Data Class and Blob).

1https://doi.org/10.5281/zenodo.3666840
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Second, we trained 15 ML-based and 4 DL-based models on three
distinct datasets based on feature selection (FS): (FS1) software met-
rics extracted by CK and Organic; (FS2) all features from FS1 plus
30 new measures obtained from project characteristics and feature
engineering; and (FS3) top-5 features from the top-3 models ob-
tained with FS2 learning. Our results demonstrate that enriching
the MLCQ dataset significantly improves the performance of code
smell detection models. ML algorithms such as Extra Trees, Ran-
dom Forest, and Decision Tree achieved an F1-score of 100% for
method-level smells (Long Method and Feature Envy) when trained
on the feature-enriched dataset, the ImprovMLCQ. Similarly, DL
models (e.g., GRU and AutoKeras) also achieved outstanding results,
particularly for class-level smells (Data Class and Blob), surpassing
traditional baselines. These findings validate the effectiveness of
integrating project-level characteristics and advanced feature engi-
neering techniques into code smell detection pipelines.

Our contributions are as follows:

• We analyzed the agreement on the classification and sever-
ity of code smells between automatic tools and experts. We
have found a complete lack of agreement between them.
This suggests that existing automatic tools fail to capture the
nuances of how developers perceive and assess code smells.
This underscores the limitations of relying solely on prede-
fined metric thresholds for automatic labeling, reinforcing
the need for more sophisticated techniques that incorpo-
rate contextual and qualitative factors to improve detection
accuracy.

• We analyzed 15 ML-based and 4 DL-based algorithms to
assess their performance, and to identify which features con-
tribute to the model’s learning. We rank these algorithms
using accuracy, recall, precision, and F1 metrics. For ML-
based algorithms, Extra Trees (ET), Decision Tree (DT) and
Random Forest (RF) performed the best. For DL-based algo-
rithms, the best performing models were Multi-Layer Per-
ceptron (MLP), Gated Recurrent Unit (GRU) and Autokeras.
We also found that the enriched dataset significantly boosts
the performance of ML and DL models. However, DL-based
algorithms tend to underperform when detecting complex
class-level smells.

• We identify the key features that had the greatest impact on
the model’s classification performance. For instance, Number
of Commits, Lines of Code (LOC), and Number of Agglomer-
ations, emerged as the most influential metrics, appearing
among the top-ranked features in 5 out of 15 models, high-
lighting a clear distinction from the features traditionally
used in state-of-the-art metric-based tools.

• Our pre-trained model serves as a valuable resource for de-
ployment and customization in diverse software develop-
ment contexts. The ImprovMLCQ dataset and all artifacts
related to this research are publicly available in [5].

Audience. Researchers and practitioners in the field of software engi-
neering may find our study’s insights highly valuable for improving
code smell detection tools.

2 Background and Related Work
In this section, we provide an overview of code smells, and we
introduce the MLCQ dataset that served as a base for our work.
Furthermore, we explore related works, highlighting existing ap-
proaches that rely on metric-based tools, and ML and DL models.

2.1 Code Smells, Severity and Agglomerations
To deliver high-quality software systems, developers should rou-
tinely practice good design principles. Deadline pressure or inexpe-
rience can lead to poor design and implementation choices, referred
to as code smells [10]. Code smells are indicators that refactoring
(modifying existing code without changing its behavior [10]) may
be beneficial, resulting in code that is easier to understand and
maintain. Each code smell is related to a code element type, e.g.
classes or methods. We decided to investigate the four smells in the
MLCQ’s dataset, due to their reliability, since code smell fragments
were manually validated by experts [9, 21]. Table 1 briefly describes
the definitions of the four code smells investigated in this study.

Table 1: Code Smells Definitions

Code Smell Definition
Long Method Method with many lines of code and respon-

sibilities.
Feature Envy Method that calls more methods from another

class than those where it belongs.
Blob Class that centralizes most of the data process-

ing, often handling excessive responsibilities,
while other classes primarily encapsulate data
and serve as its input.

Data Class Class that does not implement enough func-
tionality to justify its existence.

An important aspect of code smells is their severity, which in-
dicate the impact they can have on the evolution of a software
system. According to Madeyski al. [21], code smell severity can
be classified as follows. Critical: the code smell must be reviewed
immediately. Major : a code smell with a high impact on the system.
Minor : a code smell that can slightly impact the system. None: no
code smell was detected in the analyzed code fragment. The higher
the severity, the more critical the issue. Consequently, developers
may use severity to prioritize refactoring. In this study, one of our
goals is to understand the correlation between the severity and
agglomerations detected by automatic tools. A code smell agglom-
eration occurs when two or more smells co-occur in the same code
fragment [33], for instance, on a class. Specifically, we aim at analyz-
ing whether the presence of agglomerations (broader perspective)
impacts severity classification, since the classification of severity is
focused on one smell at a time (focused perspective). Moreover, we
also investigate how agglomerations may contribute to ML and DL
model performance.

2.2 MLCQ dataset
MLCQ is composed of 792 industry-relevant repositories from 37 dif-
ferent GitHub organizations, such as Google and Microsoft. MLCQ
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has 14 features and 15,000 code fragments manually labeled by
26 software development professionals [21]. Experts reviewed the
presence of four code smells and manually assigned their severity.
To add instances to the dataset, they used a voting method, in which
each instance (a class or method) received votes from the experts
on the fragment smelliness. Additionally, the expert’s background
data was collected, such as level of education and professional
experience in specific programming languages. Both the smell la-
beling dataset and the experts’ background dataset are available at
https://zenodo.org/records/3666840.

2.3 Related Work
Travassos et al. [37] introduced manual inspections and reading
techniques to detect code smells. They have found an important
limitation: syntactic reading is tedious and should be automated. De-
velopers have to review the entire codebase of a project to identify
code smells, and different developers have different perspectives on
what a code smell is [28]. To address this limitation, two main types
of automatic detection tools have been proposed in the literature:
metric-based and learning-based tools. Traditional metric-based
tools [6, 31, 35] are usually based on combinations of metrics and
thresholds, requiring developers to manually adjust the rules. On
the other hand, learning-based solutions automatically learn pat-
terns from the data, reducing the need for human intervention [1].

2.4 Metric-based tools
Several tools focused on computing software metrics, applying
thresholds to them, and combining the results (heuristic) to identify
smelly code [6, 30, 31, 35]. These tools vary significantly in the types
of code smells they detect, the target programming languages, the
algorithms they employ, and the underlying metrics they leverage.
Most of the tools are based on structural metrics, such as coupling,
cohesion, complexity, and size. However, defining metric thresholds
remains challenging, as they are often context-sensitive. System
domain, project size, and coding standards are examples of factors
that can influence the metric threshold definition, and their non-
consideration may result in misclassifications. In this work, we
add new features to the MLCQ dataset by employing a feature
engineering framework that dynamically adapts to project-specific
characteristics. Thus, reducing the reliance on fixed thresholds,
enabling more accurate and context-aware smell detection across
diverse software environments (see Section 3.4).

2.5 ML-based and DL-based tools
ML-based tools address metric-based tools’ limitations by learning
the features and context. Several ML solutions have been used to
detect code smells [2, 18, 22, 23, 36]. Khomh et al. [18] extended
Moha et al. [25] work using Bayesian Belief Networks to identify the
Blob smell. Maiga et al. [23] used Support VectorMachine to identify
four code smells (Blob, Functional Decomposition, Spaghetti Code
and Swiss Army Knife) in three different systems. Amorim et al. [2]
used Decision Trees to identify four code smells (Feature Envy, Long
Method, Large Class and Misplaced Class) in one system. Contrary
to our study, these studies are based on small and automatically
labeled datasets.

Additionally, other studies are using DL-based tools [19, 26].
Nanadani et al. [26] investigate how manual labeling can be used to
customize DL algorithms and improve their ability to detect code
smells. The study analyzes 3 types of smells (Complex Method,
Long Parameter List and Multifaceted Abstraction), and uses three
DL algorithms (Autoencoder with MLP classifier, Autoencoder with
LSTM classifier and Variational Autoencoder). Liu et al. [19] also
used DL-based tools to detect smells (Feature Envy, Long Method,
Large Class, and Misplaced Class). However, they do not use a man-
ually labeled dataset as ground truth. These studies motivated us to
further explore the performance of ML and DL-based tools when
using the ImprovMLCQ, a manually labeled and larger dataset.

Unlike previous studies that also used the MLCQ [1, 22, 24], our
work enhances the dataset by incorporating features extracted from
four tools, and new features generated through feature engineer-
ing techniques. We investigate the feasibility of using automatic
classification by metric-based tools as a ground truth benchmark,
assessing its reliability and limitations. Additionally, we explore
feature selection strategies to identify the most relevant features
for code smell prediction. It is important to note that the original
MLCQ dataset contained only information on the code smell type
and its severity, whereas ImprovMLCQ significantly expands the
available feature set, enabling deeper insights into code quality
assessment.

3 Study Design
This section outlines our research questions, the methodological
steps we followed, and the design of our model training and evalu-
ation process.

3.1 Research Questions
This study aims to assess ML and DL-based solutions’ performance
in a feature-enriched version of the MLCQ, the ImprovMLCQ, in
identifying and uncovering patterns in experts’ perception of what
is considered a code smell. We aim to answer the following research
questions (RQ𝑠 ):

RQ1: How consistent are code smell labels betweenmanual
expert annotations and automated detection tools?

This question examines the level of agreement between auto-
mated code smell metric-based tools and the classification provided
by experts. This analysis provides an assessment of the reliability
of the tools, identifying gaps in current detection techniques and
motivating researchers to seek other solutions to achieve a more
accurate and context-aware classification.

RQ2: Can automatically labeled code smell agglomeration
explain the severity of code smells?

This question aims at investigating if agglomerations can be used
as a feature to enhance model performance, through a quantitative
analysis of (i) agglomerations that were found in the same code
fragment that the expert evaluated; and (ii) agreement between the
presence of agglomeration on the code fragment and the severity

https://zenodo.org/records/3666840
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assigned by experts. By answering this question, we can understand
if the presence of agglomerations aligns with experts’ perceptions
of a smelly code, thereby improving the ability to prioritize the
more severe code smells.

RQ3: What is the ImprovMLCQ learning performance of
state-of-the-art multi-label ML-based and DL-based mod-
els?

Our goal is to assess if ML and DL models can accurately iden-
tify code smells, evaluating 15 different ML-based and 4 DL-based
models. Through the assessment of the model’s performance, we
can identify feature combinations that can lead to more reliable
and effective code smell detection. This insight can guide future
automated detection, focusing on high-impact features that support
different coding standards and project contexts.

3.2 Study Steps
Figure 1 shows an overview of the study steps taken to build the
ImprovMLCQ dataset and to answer our RQ𝑠 : (1) MLCQ dataset
(Step 1); (2) detection tools (Step 2) – Organic, PMD and Designite;
(3) metrics tools (Step 3) – Organic and CK; (4) projects’ repository
characteristics (Step 4); and (5) feature engineering and preprocess-
ing strategies (Step 5).

In Step 1, we pre-process the MLCQ to identify which informa-
tion to collect, such as project characteristics, and to prepare it to
include our new features. In Step 2, we used three detection tools
(Organic [6], Designite [35], and PMD [31]) to identify the same
code smells from the MLCQ. We selected these tools due to their
community acceptance [42]. More details can be found at Section
3.3.

In Step 3, we used Organic [6] and CK [3] to compute software
metrics at class and method level without the need to compile the
projects. These metrics are used as features for the model’s learning.
Since the projects from the MLCQ dataset use GitHub, we have
used the GitHub API (Step 4) to mine project features, such as the
number of commits and collaborators.

In Step 5, we apply feature engineering and preprocessing tech-
niques. For instance, we add a feature that indicates the presence
of agglomerations; features that indicate the smells detected by
automatic tools in that fragment, beyond the four smells labeled in
MLCQ. For instance, Divergent Change and Shotgun Surgery. Fi-
nally, we also created new features using the output of two cluster
techniques: Gaussian mixture models [13] and K-means cluster-
ing [20]. More details are presented in Section 3.4.

To answer RQ1 and RQ2, we use the results from steps 1 and
2. For RQ1 we analyzed through a confusion matrix and the MCC
measure the agreement rates between the manual classification
made by the experts and the automatic ones performed by the tools.
For RQ2, we analyzed whether the presence of agglomerations
detected by these tools influences the code smell severity labeled
in that code fragment. To answer RQ3, we have used the resulting
ImprovMLCQ dataset (Step 5) to apply three Feature Selection (FS)
techniques: (FS1, FS2 and FS3 – Section 3.4). Then, we used several
ML-based and DL-based models and compared their performance

across these different techniques. In the next sections, we will better
detail each step.

3.3 Code Smell Detection and Metrics Tools
In this work, we used three different automatic detection tools in
order to, beyond understanding if their output are good representa-
tives of developer’s perception on code smell presence, if the tool’s
output can be used as a feature in the ML models, i.e., if different
code smells identified by the tools can be useful in predicting the
four code smells that we analyze (Long Method (LM), Feature Envy
(FE), Data Class (DC), and Blob). For instance, the presence of a
Large Class can help identify a Blob class. The selected tools are:
Organic, PMD, and Designite. Organic and Designite are capable
of identifying the four smells. Meanwhile, PMD can identify Long
Method, Blob, and Data Class. They also allow developers to se-
lect which detection strategies to use: developers can configure
threshold metric values to adjust for their context, or use its default
configuration. For our purpose, we used the default configuration
of the tools to avoid overfitting the tools to the analyzed projects.

Additionally, we use two state-of-the-art tools, Organic [6] and
CK [3], to compute 20 additional software metrics. These tools
calculate class-level and method-level code metrics using static
analysis (i.e., no need for executing the code). Currently, it calculates
a large set of known metrics, including the Number of Methods,
LOC (Lines of code), and Cyclomatic Complexity, and others.

A step to match the data from the automated tools (e.g., CK and
Organic) with the ImprovMLCQ was also needed. To match the
original data from the MLCQ with the tools’ output, we considered
for each code fragment on MLCQ the commit hash, path, start, and
end line. As each fragment are reviewed by several experts, we
recorded for each of them the list of experts who performed the
review and their corresponding classification and severity. And
then, having matched a method/class on the MLCQ with the tools
output, we added to the code fragment data the smells detected by
each detection tool and its respective software metrics.

3.4 Feature Engineering
In our study, we created new features based on the results of the
three code smell detection tools, two metric tools, and the projects’
characteristics mined fromGitHub. Table 2 illustrates some different
types of features that are part of ImprovMLCQ. A few examples
of features are: (i) code granularity, whether the code fragment is
part of a method or a class; (ii) the reviewer’s skill; (iii) its smell
type, whether the code fragment is Long Method, Feature Envy,
Data Class, or Blob; (iv) severity; (v) agglomeration, indicating the
number and types of code smell agglomerations in a code fragment;
(vi) number of Lines of Code for a code fragment; (vii) number
of commits for a code fragment; and (viii) the relevance of the
project according to GitHub classification. In total, ImprovMLCQ is
composed of 191 features.

Moreover, before using our data in the models’ learning, we
first had to pre-process it. For this purpose, we performed an Ex-
ploratory Data Analysis, utilizing the ProfileReport function from
the YData Profiling library2. We selected this function due to its
capability to generate a comprehensive and detailed report on the
2https://docs.profiling.ydata.ai/latest/

https://docs.profiling.ydata.ai/latest/
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Figure 1: Overview of the Study Design

Table 2: Examples of Features from ImprovMLCQ

Type of Features Description

MLCQ Dataset (FS1) Classification of code fragments re-
gard four code smell types and four
severity categories

Metrics Computation Tools
(FS1)

Use of CK and Organic to quanti-
tative measures of the code frag-
ments

Smell Detection Tools (FS2) Use of PMD, Designite, and Or-
ganic to identify and label code
smells automatically within a code
fragment

Project Characteristics (FS2) Broader characteristics related to
the software project rather than in-
dividual code fragments

Feature Engineering (FS2) Generation of new features based
on existing data to reveal hidden
patterns

top-5 features (FS3) Features with the best FS2 training
performance

dataset. The initial report identified several issues, including dupli-
cate rows, columns with null values (NaN), the presence of outliers,
and variance problems. Additionally, it enabled the identification
of columns requiring data transformation and standardization, par-
ticularly numerical variables stored as lists.

We established a discard criterion for all columns where more
than 50% of the values were NaN, as the application of standard
imputation methods in these cases could compromise data integrity,
introduce noise, and reduce overall reliability. The columns affected
by outliers and variance problems were already discarded due to
these missing values, making additional preprocessing unnecessary.
Subsequently, we reviewed missing records and replaced empty
fields with 0, as many of the dataset’s variables are binary, where
0 represents the default “False" state. We identified and removed
duplicated lines. It happened because CK and Organic computed the
same metrics. During the data standardization phase, all numerical
columns prefixed with “CK" underwent a transformation, as these
fields contained lists of numerical values, we replace each field
with the average of the respective list elements. Furthermore, we

excluded all textual variables that did not conform to categorical
data (such as URLs, file names, and project addresses), as they do
not contribute meaningful information to the model learning.

The system retained all synthetically generated variables after
data cleaning. Upon completion of the preprocessing steps, the
dataset consists of 71 features, categorized into two types: 42 nu-
merical and 29 categorical, and 13,489 records. Then, we proceed
with considering three Feature Selection (FS) datasets: FS1, FS2, and
FS3. Number of Methods and Exception Type Count are examples
of software metrics extracted from the CK and Organic tool that
were added to our first dataset (FS1). The (i) output of the three
smell detection tools, (ii) the agreement between the tools when at
least two tools detect code smells in the same piece of code, (iii) the
project characteristics, such as team size and number of commits,
and (iv) application of feature engineering, such as clustering of
the systems and the presence of agglomeration, were added to our
second dataset (FS2). Finally, our third dataset (FS3) is composed of
the top-5 features discovered by learning from FS2 (Table 2). See
our supplementary material for a detailed data dictionary of all
considered features [5].

3.5 Model Training and Evaluation
We selected fifteen ML algorithms3 using feature engineering and
feature selection to compare their predictive performance (see Sec-
tion 4.3). The algorithms are: k-Nearest Neighbor (kNN) [17], Linear
Regression (LR) [17], Support Vector Machine (SVM) [17], Decision
Tree (DT) [15], Random Forest (RF) [17], Extreme Gradient Boost-
ing package (XGB) [17], Ridge Classifier (RC) [16], Light Gradient
Boosting (LGB) [8], Gradient Boosting (GB) [12], Ada Boost (ADA)
[11], Extra Trees (ET) [14], Naive Bayes (NB) [17], Linear Discrim-
inant Analysis (LDA) [4], Quadratic Discriminant Analysis (QDA)
[32] e Dummy Classifier (DC) [38]. These algorithms were chosen
based on a list of the most frequently used ML algorithms in the
areas of defect and code smell classification [34]. In addition, we
selected four DL algorithms: Multi Layer Perceptron (MLP) [26],
Long Short-Term Memory (LSTM) [26], Gated Recurrent Unit (GRU)
[41] and Autokeras4 algorithms. They were selected based on their
performance on previous studies [17, 26, 41].

We trained the models using multi-label targets and calculated
their performance based on the F1-score, a measure derived from

3We used the PyCaret library https://pycaret.readthedocs.io/en/latest to build and
train our models.
4https://autokeras.com/tutorial/multi/

https://pycaret.readthedocs.io/en/latest
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precision and recall metrics that is more suitable for unbalanced
datasets, such as ImprovMLCQ. We split our data in 80% for train-
ing and 20% for testing to avoid overfitting. Additionally, various
resampling methods were considered, including cross-validation
and stratified sampling, ensuring a balanced representation of dif-
ferent classes. We focus our report on the average values across
these splits. To fine-tune each model, we used the grid search tech-
nique. We highlight that we train the models over three variances
of feature selection (FS) (i.e., three datasets):

• (FS1) Uses automatically computed metrics from the Organic
and CK tools. This set of 34 features provides a broad foun-
dation of both structural metrics and labeling outputs to
support predictive analysis.

• (FS2) Builds on FS1 by applying feature engineering tech-
niques to create new features based on automatic code smell
classifications and project characteristics. This step expands
the feature set with engineered features, and we aim to un-
derstand if they can enhance the models’ ability to capture
patterns in code smells. FS2 has a total of 64 features.

• (FS3) Uses the top-5 most relevant features5 selected from
the ML-based model trained on FS2. We trained all top-3
models from FS2 to get the top-5 features, and we show
the results for the model with the highest F1-score. For an
exhaustive analysis of all our results and findings, please see
our supplementary material [5].

3.6 Evaluation Metrics
We use the confusion matrix (Table 3) aiming to investigate the
agreements’ rate between the manual and automatic labeling, and
the ML-based model performance. Each row of the matrix repre-
sents the automatic tool labeling (i.e., by Organic, PMD, Designite,
and ML-based models), while each column represents the MLCQ
experts’ labeling (a.k.a., ground truth). In this matrix, TP (True Pos-
itive) is when both the tool and MLCQ label the code sample with
the smell. TN (True Negative) is when both the tool and MLCQ
label the code sample as not having the smell. FP (False Positive) is
when the tool labels the code sample with a smell, but MLCQ does
not label it. FN (False Negative) is when the tool does not label the
code sample with the smell, but in MLCQ the expert labels it with
the smell. Several important metrics are derived from the confusion
matrix (see Table 4):

• Precision: It is the proportion of correctly predicted positive
instances out of all instances predicted as positive.

• Recall: It is the proportion of actual positive instances that
were correctly identified by the model.

• F1-Score: It is the harmonic mean of precision and recall,
balancing the trade-off between these metrics.

We also use Matthews Correlation Coefficient (MCC). MCC is
used for evaluating the agreement between automatic and manual
labeling. It measures the quality of binary classifications and uses
all values of the confusion matrix (see Equation 1).

𝑀𝐶𝐶 =
(𝑇𝑃 ∗𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁 )√︁

(𝑇𝑃 + 𝐹𝑃) (𝑇𝑃 + 𝐹𝑁 ) (𝑇𝑁 + 𝐹𝑃) (𝑇𝑁 + 𝐹𝑁 )
(1)

5We used PyCaret’s function plot_model(model, plot=’feature’).

Table 3: Confusion matrix. TP = True positive; FP = False
positive; TN = True negative; FN = False negative

MLCQ labeling
Smelly N-Smelly

Tools’
labeling

Smelly TP FP
N-Smelly FN TN

Table 4: Evaluation Metrics Used in this Study

Metric Precision Recall F1-Score

Formula
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
2 × Precision × Recall

Precision + Recall

The MCC value ranges from -1 to +1. A coefficient +1 indicates
perfect agreement, 0 indicates no better than random labeling, and
-1 indicates total disagreement.

3.7 Experiment Setup
The machine specifications for running Organic, PMD, Designite,
and CK were 64 GB of RAM memory, 12th Gen Intel(R) Core(TM)
i7-12700H 2.30 GHz, and no dedicated GPU. The Operating System
was Ubuntu 22.10. All learning experiments have been performed
on Google Colaboratory6 using Phyton as a programming language,
and the scikit-learn7 and Pycaret8 libraries for predictive data anal-
ysis. All used scripts and data can be found in our complementary
material (see Section 5).

4 Results and Discussion
This section discusses the results of the research questions (see
Section 3.1). We focus on the most interesting insights and present
the complete report in our supplementary material [5].

4.1 Manual vs Automatic Labeling (RQ1)
Manually labeling a large dataset of code smells is both costly
and subjective. Developers’ perceptions of smelly and non-smelly
(N-smelly) code are influenced by various factors, such as their
background and project characteristics. To assess the reliability of
automatic detection tools, we first analyzed the agreement between
manual and automated code smell classification. Table 5 presents
the confusion matrix for the detection strategies, comparing auto-
matic labeling with expert-labeled MLCQ data. Rows shows the
results for the detection tools, while the columns presents the re-
sults for the manual classification. For instance, in the case of the
Long Method (LM) smell, we observed for Organic – True Positives
(TP): 120 instances correctly labeled as smelly by both Organic and
MLCQ experts. For Organic – True Negatives (TN), 217 instances
were correctly labeled as non-smelly (N-Smelly) by both sources.
Organic – False Positives (FP): 830 instances incorrectly identified
as smelly by Organic but labeled as non-smelly by MLCQ experts.

6https://colab.research.google.com/
7https://scikit-learn.org/
8https://pycaret.readthedocs.io/en/latest
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Table 5: Confusion Matrix for Code Smells and Tools

Tool Classification
Long Method (LM) Feature Envy (FE) Data Class (DC) Blob
Smelly N-Smelly Smelly N-Smelly Smelly N-Smelly Smelly N-Smelly

Organic Smelly 120 830 29 474 70 1,236 104 1,203
N-Smelly 3 217 36 592 10 706 36 784

PMD Smelly 43 907 - - 191 1,115 270 1,037
N-Smelly 2 218 - - 36 680 80 740

Designite Smelly 99 851 0 503 0 1,306 0 1,307
N-Smelly 15 205 0 628 0 716 0 820

Organic – False Negatives (FN): 3 instances labeled as non-smelly
by Organic but identified as smelly by experts.

For Long Method, Organic exhibited the highest capability in
correctly identifying the smell, with a low False Negatives (FN)
rate (3 instances). However, its reliability is compromised by an
excessive number of False Positives (FP) cases (830), suggesting
an overly aggressive classification approach. Similarly, PMD and
Designite also show high FP rates, with 907 and 851 instances
misclassified as Long Method, respectively.

For Feature Envy, all tools performed poorly in detecting smelly
instances, despite showing some agreement on N-smelly ones (True
Negatives (TN): 592 for Organic and 628 for Designite). For Data
Class and Blob smells, Organic and Designite exhibit high False
Positives (FP) rates (1,236 and 1,203 for Organic; 1,115 and 1,037
for PMD; 1,306 and 1,037 for Designite). This suggests significant
disagreement between automatic tools and manual classification,
highlighting a lack of precision in identifying these code smells.
Consequently, using these tools in isolation may bias the findings
with FP. This motivates us to further explore if they can be used as
a feature for more sophisticated detection tools.

To quantify agreement, we compute the Matthews Correlation
Coefficient (MCC) in Table 6. High MCC values (close to 1) indicate
strong agreement, while low values (close to -1) signify poor cor-
relation. Values close to 0 indicates weak or almost no agreement.
The results show consistently low MCC values, confirming weak
alignment between automatic tools and expert labeling. Improv-
ing code smell detection requires balancing sensitivity (detecting
TP) and specificity (reducing FP). This highlights the need for en-
hanced feature engineering, threshold adjustments, and ML-based
and DL-based solutions.

Table 6: MCC for Code Smells and Tools

Tool LM FE DC Blob

Organic 0.1435 0.0007 0.0972 0.0700
PMD 0.0735 - 0.1454 0.1431
Designite 0.0475 - - -

Finding 1: All three automated tools show limited ability
to align with MLCQ data labeled by experts in identifying
instances of code smells, as indicated by the high rate of
False Positives (FP). Therefore, the current tools may not
adequately capture the nuances of code smells as perceived
by experts. This suggests a systemic issue with previous
studies that use these tools for identifying code smells,
e.g., to train models. The poor agreement emphasizes the
importance of being cautious when using these tools as
ground truth.

4.2 Agglomeration Analysis (RQ2)
Our goal in answering this question is two-fold. First, we want to
understand if agglomerations detected by automated tools agree
with the experts’ manual classification. We highlight that we con-
sider an agglomeration as two or more occurrences of smells on
a code fragment, and they may not necessarily contain the four
analyzed smells. For instance, we analyzed whether an agglomera-
tion composed of Divergent Change and Long Parameter List may
indicates the Long Method as classified by the experts. Second, we
want to understand if agglomerations detected by automated tools
reflect in the severity assigned by the experts.

Table 7 shows a deeper view of the agreement rates of agglom-
erations identified by detection tools with expert classification of
smell types (left side) and severity (right side). The last row (#In-
stances by Experts) provides a total count of instances labeled by
experts in each category. These totals help in understanding the
distribution of instances across different smell types and severity
categories, providing insight into how prevalent each type of code
smell is within the dataset.

Table 7 (left side) presents the agreement rates between the
manual labeling and the agglomeration presence. Rows presents the
tools that detected the agglomerations, while the columns presents,
for each of the four smells classified by the experts, the respective
agreement. For instance, Organic identified that 6% (74 instances)
of the Long Method (LM) instances identified by the experts have
an agglomeration. The results show that agglomerations identified
by Designite (3rd row) are good indicators of the presence of the
smells classified by the experts, especially for smells at class (Data
Class and Blob). Meanwhile, agglomerations identified by Organic
did not agree meaningfully with the experts (2-6%).
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Table 7: Agreement of Agglomerations Identified by Detection Tools with Expert Classification of Smell Type and Severity

Tool
Smell Type Severity

LM FE DC Blob Critical Major Minor None

Organic 74 (6%) 53 (5%) 50 (2%) 86 (4%) 37 (8%) 85 (6%) 73 (3%) 270 (2%)
PMD 246 (21%) 127 (11%) 606 (30%) 1,003 (47%) 205 (42%) 437 (32%) 661 (30%) 1,967 (14%)
Designite 569 (49%) 506 (45%) 1,288 (64%) 1,344 (63%) 317 (65%) 820 (60%) 1,225 (55%) 7,184 (52%)

#Instances by Experts 1,170 1,131 2,022 2,127 487 1,359 2,220 13,767

Overall, we can observe that Designite’s agglomerations can
have the potential to uncover patterns in experts’ classifications.

Finding 2: The highest agreement is between Designite’s
agglomeration and expert classification, mainly for Data
Class (DC) and Blob. This underscores the importance of
incorporating new feature engineering techniques, (e.g.,
based on Designite’s patterns) to automatically detect code
smells and assist software quality and maintainability. This
finding also indicates that studies considering code smell
co-occurrence as a feature, investigating how different
combinations of them can improve the code smell detec-
tion’s performance in both Machine Learning and Deep
Learning, should be further explored.

Table 7 (right side) is organized in the same fashion as the Smell
Type analysis, but it is focused on presenting the results by severity
degrees while considering all code smell types. The rows present
the agreement rates for each tool, and the columns represent the
agreement rates by severity degree. The table shows that Designite
achieves the highest agreement across different severity categories
(see 3rd row). For instance, 65% of instances labeled as Critical by
experts were also classified as agglomerations by Designite. Notice
that Designite classifies a significant number of instances (52%) as
having agglomeration, while the severity classification was None
by experts.

The significant presence of agglomerations in non-smelly in-
stances highlights the tool’s tendency to over-identify agglomera-
tions, which might contribute to False Positives (FP). This suggests
that while Designite is adept at identifying multiple issues, it might
also incorrectly flag clean code fragments as problematic. More-
over, the lower percentages of single-smell instances indicate that
Designite may have a higher tendency to identify code fragments
with multiple intertwined issues rather than isolated ones. Con-
sequently, further investigation may be warranted to understand
factors contributing to Designite’s high agreement rates, addressing
any discrepancies of FP identified in its classification results.

Finding 3:We show Designite’s discrepancies related to
None instances. The significant agreement for these in-
stances raises questions about the correlation between
severity and agglomeration.

4.3 ImprovMLCQ Learning Performance (RQ3)
Table 8 presents the results obtained for the top-3 ML-based models.
The predominant occurrence in the top-3 models includes algo-
rithms that work with a high degree of randomness during the
learning process, such as ET and RF, as well as those that perform
well with imbalanced datasets, like LGB and GBC.

It becomes evident that FS1 underperforms when compared to
FS2 across all four code smells, regardless of the selected model
(see F1-score values). This performance gap can be attributed to
the limited scope of FS1, which includes only metrics derived from
CK and Organic tools. In contrast, FS2 leverages a broader and
more diverse set of features, integrating structural metrics with
repository-based metadata and aggregated characteristics derived
from preprocessing. This richer representation enabled the models
to learn more nuanced patterns, contributing significantly to the
improved classification performance.

Interestingly, FS3 (composed of the top-5 features selected via
feature importance rankings) fails to outperform FS2. This outcome
suggests that, in this domain, feature selection alone may not be
sufficient to maximize performance. Although feature selection
techniques aim to retain the most informative variables and discard
noisy or redundant ones, they inherently assume that a subset of
features can capture the relevant patterns for all classes and models
equally well. This assumption may not hold in complex tasks, such
as code smell classification, where different smells may depend
on distinct and possibly complementary feature sets. Therefore,
the reduction in feature diversity in FS3 likely led to the loss of
useful contextual information, limiting the model’s ability to dis-
tinguish between smelly and non-smelly code. Thus, broader and
well-engineered feature sets (as in FS2) may yield better results
than narrowly focused or overly reduced subsets.

The highest F1-score for code smells defined at the method level
was 1 (for FS2), exhibiting a higher F1-score than code smells from
the class level. For class-level code smells, the highest F1-score
value was 0.58 (also for FS2). This could be because the complexity
involved in defining method code smells is lower than that for class
code smells, regardless of whether the evaluation is conducted by
a human or a tool. This complexity is reflected in the data. This
result aligns with expectations, leading us to validate the features
used in the model composition as satisfactory. See the comparison
of FS to ML in the table 9.
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Table 8: Top-3 ML Models per Feature Selection Strategy - Long Method, Feature Envy, Data Class and Blob

Long Method (LM) Feature Envy (FE) Data Class (DC) Blob

Model Recall Prec. F1 Model Recall Prec. F1 Model Recall Prec. F1 Model Recall Prec. F1

FS1
RF 0.64 0.23 0.34 RF 0.30 0.37 0.33 RF 0.41 0.61 0.49 ET 0.39 0.53 0.45

GBC 0.65 0.23 0.34 ET 0.28 0.40 0.33 ET 0.41 0.60 0.49 DT 0.39 0.53 0.45

ET 0.63 0.23 0.34 DT 0.28 0.40 0.33 DT 0.41 0.60 0.49 GBC 0.40 0.51 0.45

FS2
ET 1 1 1 ET 1 1 1 ET 0.59 0.59 0.59 ET 0.53 0.66 0.59

RF 1 1 1 RF 1 1 1 RF 0.58 0.58 0.58 RF 0.52 0.67 0.59

DT 1 1 1 DT 1 1 1 DT 0.59 0.57 0.58 DT 0.53 0.66 0.59

FS3
LGB 0.22 0.15 0.18 ET 0.29 0.17 0.21 KNN 0.15 0.28 0.20 ET 0.48 0.59 0.53

ET 0.22 0.15 0.18 DT 0.29 0.17 0.21 LGB 0.13 0.27 0.17 DT 0.48 0.59 0.53

DT 0.22 0.15 0.18 LGB 0.29 0.17 0.21 RF 0.13 0.28 0.17 RF 0.47 0.59 0.53

Table 9: Comparison for ML Models

Comparison U Statistic p-value Significant (p < =0.05)

FS1 vs FS2 0.00 0.06 No
FS1 vs FS3 9.00 0.06 No
FS2 vs FS3 9.00 0.07 No

Finding 4: Our findings indicate that integrating diverse
feature sets (FS2) into ImprovMLCQ dataset significantly
enhances the learning accuracy of ML-based models for
code smell detection. Meanwhile, for the FS3 set, in which
the top five features that most contributed to the top-three
models on the FS2 set are considered, did not improve the
model’s capabilities in detecting the four code smells. Even
worse, for all smells, except Blob, the model’s performance
is worse than tossing a coin. This indicate that, even though
their contribution is significant in FS2, the models needs
more features to learn the patterns.

Table 11 presents the results obtained for the 4 DL-based models.
It also indicates that FS1 performed the worst among the three
datasets, with an F1-score below 0.4. FS1 for DL showed signifi-
cantly lower results compared to FS1 for ML. FS2 exhibited the best
performance across all code smells for the MLP, GRU, and Autok-
eras models. The LSTM was unable to learn the pattern from the
FS2 dataset, highlighting that the LSTM technique is not suitable
for detecting these smells. Comparing the results with the results in
Table 8 for class-level code smells, DL-based algorithms performed
better. The DL models by code smell type showed superior results
to those demonstrated by the ML models for FS3, where method-
type code smells showed higher values in all metrics compared
to class code smells. An unexpected result was that all four DL-
based models achieved an F1-score greater than 0.63 for the FS3
dataset, performing better than ML-based models for class-level
smells (Data Class and Blob). This finding suggests that even when

considering only the top-5 most relevant features, it is possible to
achieve competitive predictive accuracy with DL models. These
results highlight the potential of a more refined feature selection
approach, where a carefully chosen subset of features can yield
effective classification models while reducing complexity.

DL captures complex relationships between attributes and adapts
to the contexts of the trained data, which may have influenced its
results being better than those of ML. See the comparison of FS to
DL in the table 10.

Table 10: Comparison for DL Models

Comparison U Statistic p-value Significant (p < =0.05)

FS1 vs FS2 4.00 0.30 No
FS1 vs FS3 0.00 0.03 Yes
FS2 vs FS3 12.00 0.30 No

Finding 5: Our findings indicate that using the top-5 fea-
tures in DL-based models yields results that are close to
FS2, with a significant performance improvement for class-
level smells compared to ML-based models. This allows
us to abstract the model, enhancing its efficiency while
maintaining good accuracy, ultimately facilitating the clas-
sification of code smells in real-world scenarios.

Overall, FS1 performed the worst across all datasets, where F1-
scores fell below 0.5 for ML and 0.4 for DL. The superior results of
FS2 confirm that ImprovMLCQ is a reliable dataset for code smell
classification using ML-based and DL-based algorithms.

4.4 Threats to Validity
This section discusses potential threats to the validity of this study
according to the four categories proposed by Wohlin et al. [39]:
internal, external, construct, and conclusion validity.
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Table 11: Top-4 DL models per feature selection strategy - LM, FE, DC and Blob

Long Method (LM) Feature Envy (FE) Data Class (DC) Blob

Model Recall Prec. F1 Recall Prec. F1 Recall Prec. F1 Recall Prec. F1

FS1

MLP 0.10 0.39 0.16 0 0 0 0.06 0.58 0.10 0.05 0.62 0.09

LSTM 0.10 1 0.02 0.01 0.29 0.03 0 0 0 0.23 0.55 0.33

GRU 0.08 0.31 0.12 0.01 0.50 0.01 0.16 0.46 0.34 0.25 0.57 0.34

AutoKeras 0.15 0.35 0.21 0.07 0.40 0.11 0.14 0.43 0.21 0.28 0.54 0.37

FS2

MLP 1 1 1 1 1 1 1 1 1 1 1 1

LSTM 0 0 0 0 0 0 0 0 0 0 0 0

GRU 1 1 1 1 1 1 1 1 1 1 1 1

AutoKeras 1 1 1 1 1 1 1 1 1 1 1 1

FS3

MLP 1 1 1 1 1 1 0.67 0.59 0.63 0.61 0.66 0.63

LSTM 1 1 1 1 1 1 0.67 0.61 0.64 0.64 0.69 0.66

GRU 1 1 1 1 1 1 0.67 0.59 0.63 0.60 0.68 0.64

AutoKeras 1 1 1 1 1 1 0.71 0.60 0.63 0.58 0.69 0.63

Internal Validity. To ensure data integrity and avoid errors dur-
ing data collection, model training, and analysis, we used well-
established Python libraries such as PyCaret. Additionally, we man-
ually reviewed all notebooks multiple times to guarantee that the
experimental procedures were correctly followed and that the find-
ings are consistent with the data. Still, conducting experiments with
other algorithms and tuning parameters is an important next step,
which is part of our future work.

External Validity. The generalizability of our findings is limited
in several ways. First, all systems in the dataset are implemented
in the Java programming language, which may reduce applicability
to systems developed in other languages. Second, although the
MLCQ dataset comprises 792 real-world software systems, it may
not represent the full diversity of industry projects. Future work
will investigate the transferability of our approach to different
languages and datasets.

Construct Validity. This study focuses on analyzing the severity
of four specific code smells: Long Method, Feature Envy, Data Class,
and Blob. As a result, the findings may not extend to other types of
code smells. Moreover, we relied on four state-of-the-art tools (CK,
Organic, PMD, and Designite) to extract code metrics and smell
labels. While these tools have been widely used in prior studies,
their internal heuristics and limitations may introduce bias in how
design issues are identified and measured.

Conclusion Validity. Although we employed robust methods and
tools throughout our study, threats to conclusion validity still exist.
Furthermore, as the results are based on the current version of the
dataset and tooling, replication with alternative configurations is
essential to confirm the reliability of our findings.

5 Conclusion
Manual labeling of code smells is a complex and time-consuming
process. Currently, not all available code smell datasets are reli-
able reference bases for real-world software development contexts,
since they use metric-based tools as a ground truth. This study
demonstrates relatively low agreement rates between both labeling
processes, highlighting the importance of cautious interpretation
of automated metric-based tools’ outputs.

We also explore the reliability of a dataset built in an automated
manner using other metrics not considered by state-of-the-art tools.
Our evaluation of 15 ML-based and 4 DL-based algorithms; and
three feature selection strategies (FS1, FS2, and FS3) for predicting
four types of code smells (Long Method, Feature Envy, Data Class,
and Blob) revealed key insights: (1) The consideration of several
features resulting from the employment of feature engineering
strategies consistently delivered the best performance across all
code smells. (2) ML-based models like RF, ET and DT balanced
performance making them suitable for method-level smells (Long
Method and Feature Envy), while DL-based models like MLP, GRU
and AutoKeras were more suitable for class-level smells (Data Class
and Blob). DL-based models presented very good results while
considering only the top-5 features.

Based on these findings, future research should focus on refining
feature engineering strategies, initiate a review of heuristic-based
tools to ensure that they assign greater importance to the variables
identified as key by learning models, and experimenting with dif-
ferent sampling and transfer learning approaches. We gathered
preliminary insights about the effectiveness of under-sampling (see
our supplementary material [5]). Future studies should explore
over-sampling strategies, like SMOTE (Synthetic Minority Over-
sampling Technique) [7]. We also aim to expand the evaluation
to include additional code smells, as more diverse datasets can
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provide a broader understanding of the models’ effectiveness and
generalizability.

Data Availability
All artifacts of this study can be accessed at ImprovMLCQ’s GitHub
repository in [5].
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