Improving JavaScript Test Quality with Large Language Models:
Lessons from Test Smell Refactoring

Gabriel Amaral
gabrielamaralsousa@gmail.com

Carla Bezerra
UFC

carlailane@ufc.br

Abstract

Test smells—poor design choices in test code—can hinder test main-
tainability, clarity, and reliability. Prior studies have proposed rule-
based detection tools and manual refactoring strategies, most fo-
cus on statically typed languages such as Java. In this paper, we
investigate the potential of Large Language Models (LLMs) to au-
tomatically refactor test smells in JavaScript, a dynamically typed
and widely used language with limited prior research in this area.
We conducted an empirical study using GitHub Copilot Chat and
Amazon CodeWhisperer to refactor 148 test smell instances across
10 real-world JavaScript projects. Our evaluation assessed smell
removal effectiveness, behavioral preservation, introduction of new
smells, and structural code quality based on six software metrics.
Results show that Copilot removed 58.78% of the smells successfully,
outperforming Whisperer’s 47.30%, while both tools preserved test
behavior in most cases. However, both also introduced new smells,
highlighting current limitations. Our findings reveal the strengths
and trade-offs of LLM-based refactoring and provide insights for
building more reliable and smell-aware testing tools for JavaScript.

Keywords
Test Smells, Large Language Models (LLMs), JavaScript

1 Introduction

Testing is a critical phase in the software development lifecycle,
ensuring reliability and quality while reducing long-term costs
through early defect detection [3, 5, 30]. Although automated test-
ing offers scalability and efficiency over manual methods [2], it
brings challenges related to test code quality, notably the presence
of test smells—poor design practices that compromise maintain-
ability, readability, and effectiveness [22, 26, 36]. Smells such as
code duplication, unclear logic, inter-test dependencies, and overly
complex or rigid cases hinder adaptation to system changes and
increase maintenance, as minor updates may require extensive test
rework [36]. Addressing them is essential, as empirical studies re-
veal their widespread impact on test suite sustainability and their
role in undermining confidence in automated testing [26, 36].
Despite these advancements, most studies and tools in this do-
main have concentrated on statically typed languages, such as Java
[38], Scala [10], Smalltalk [31], and C++ [4]. In contrast, JavaScript,
currently one of the most widely used programming languages [6],
has received comparatively little attention. For example, a system-
atic mapping study revealed 22 tools for detecting test smells, yet
none were specifically designed for JavaScript codebases [1]. This

Henrique Nunes Gomes
UEFS UFMG
henrique.mg.bh@gmail.com

Eduardo Figueiredo
UFMG
figueiredo@dcc.ufmg.br

Larissa Rocha
UNEB/PGCC-UEFS
larissabastos@uneb.br

gap is particularly notable given JavaScript’s dynamic nature and
widespread adoption. More recent efforts have started to explore
this area by investigating smell detection in JavaScript test code
[17, 25, 33].

In addition to detection, recent research has also focused on au-
tomating or semi-automating the refactoring of test smells [28, 29,
32, 34]. With the rise of generative Al researchers have been explor-
ing the use of language models for such tasks [21]. Large Language
Models (LLMs) have emerged as promising tools for automating
various software engineering activities, including test code improve-
ments [16, 42]. However, their application to test refactoring is still
in its early stages and faces key challenges, such as hallucinated
code, inconsistent refactorings, and limited understanding of test-
ing frameworks. Even so, LLM-powered tools, like Copilot Chat
[13], have demonstrated impressive performance in generating and
refactoring code, with studies reporting high levels of accuracy
in these tasks [7, 43]. More recently, investigations have begun to
assess how LLMs perform specifically in the context of test smell
detection and refactoring [8]. However, as far as we are concerned,
no previous work has explored the use of LLMs to refactor test
smells in JavaScript.

This study aims to evaluate the effectiveness of LLMs in refac-
toring JavaScript test code affected by test smells. We conducted an
empirical study involving two LLMs — GitHub Copilot Chat and
Amazon CodeWhisperer — initially using a zero-shot prompting ap-
proach to refactor test code snippets containing known test smells.
These test smells were identified in open-source JavaScript projects
using two automated detection tools. The study targeted a subset
of ten test smells, such as Conditional Test Logic, Overcommented
Test, and Suboptimal Assertion. We analyzed a total of 148 instances
of test smells extracted from 10 open-source Javascript projects.

To assess the effectiveness of LLM-generated refactorings, we
developed a framework evaluating test result changes, coverage
variation, smell removal and introduction, and software quality
metrics for long-term maintainability. Both LLMs produced syntac-
tically valid refactorings, though they differed in grasping testing
idioms. Copilot outperformed Whisperer, removing 58.78% of smells
(87/148), especially in Conditional Test Logic, likely due to stronger
contextual inference. Whisperer removed 47.30% (70/148). Qual-
ity metrics showed both preserved core properties like complex-
ity and maintainability, using distinct strategies: Copilot applied
conservative, cognitively efficient changes; Whisperer prioritized
structural optimization, improving density but slightly increasing
code size. Despite differences, both maintained high maintainability,

SBES-IIER 2025, September 22-26, 2025, Recife, Pernambuco, Brazil

suggesting complementary strengths in Al-assisted refactoring and
emphasizing the need for further domain-specific tuning.

2 Background and Related Work
2.1 Tools for Test Smell Detection

Test smells arise from poor design decisions in test code and can
hinder maintainability and reliability [26]. For instance, Sensitive
Equality makes tests brittle by comparing objects via toString,
while Assertion Roulette obscures test failures due to multiple un-
documented assertions [36]. Detecting and resolving such issues is
particularly challenging in large test suites, motivating the devel-
opment of automated detection tools [19, 27, 31, 32, 37, 38].

Early tools focused on statically typed languages. For example,
TestLint [31] identifies maintainability problems in Smalltalk tests,
while TeCReVis [19] visualizes redundancy in Java test coverage.
In the Java ecosystem, tsDetect [27] uses AST-based rules to detect
19 test smells in JUnit with high precision and recall. Tools like
JNose [37, 38] and RAIDE [32] extend tsDetect’s capabilities by
incorporating smell-specific metrics and IDE-integrated refactoring
support.

JavaScript, however, has only recently received attention. Steel
[17] detects 16 JavaScript-specific test smells, such as Eager Test,
Lazy Test, and Assertion Roulette. TestSmellDetector]s [33] builds on
Steel to incorporate eight additional smells, adapting heuristics from
PyNose [39]. More recently, SNUTS.JS [25] introduced detection for
15 diverse smells, including Overcommented Test, General Fixture,
and Transcripting Test.

While these tools are rule-based and limited by static patterns,
our study investigates whether LLMs can offer more flexible and
context-aware support for smell resolution through automated
refactoring.

2.2 LLMs for Tests

Large Language Models (LLMs) are transforming Software En-
gineering (SE) tasks, including code generation [23] and bug re-
pair [24]. However, their role in testing remains less explored. Re-
cent studies have assessed LLMs’ ability to generate test code [15],
detect test smells [20], and refactor them [11, 12].

Hasan et al. [15] showed that GPT-40, Gemini, Llama 3.1, and
Mistral can generate readable and accurate tests from use cases.
Lucas et al. [20] evaluated smell detection using ChatGPT-4, Gemini
Advanced, and Mistral Large—ChatGPT-4 identified 21 of 30 smell
types, outperforming the others. In the refactoring domain, Gao
et al. [12] proposed UTRefactor, a Java-based LLM framework that
applied chain-of-thought prompting and achieved 89% smell reduc-
tion in 6 repositories. Fatima et al. [11] explored LLMs in repairing
flaky tests using a curated dataset and improved ChatGPT 3.5’s
repair rate to 51-83%.

Our contribution differs in three key ways. First, we focus on
JavaScript, a dynamically typed language with limited prior work on
smell refactoring. Second, we evaluate two production-grade LLM-
based assistants—Copilot Chat and CodeWhisperer—on real-world
test suites. Third, we go beyond detection by analyzing removal
effectiveness, behavioral preservation, metric-based quality, and
the emergence of new smells after refactoring.

Gabriel Amaral, Henrique Nunes Gomes, Eduardo Figueiredo, Carla Bezerra, and Larissa Rocha

3 Study Design

3.1 Goals and Research Questions

The primary goal of this paper is to evaluate the effectiveness of
Large Language Models (LLMs) in automated test code refactoring,
with a particular focus on mitigating test smells.

To guide this investigation, we formulated four research ques-
tions. RQ1 examines to what extent LLMs can remove test smells
from JavaScript test code without compromising test behavior or
coverage. RQ2 explores whether LLM-assisted refactoring intro-
duces new test smells, including combinations that may degrade
code quality. RQ3 compares the effectiveness of different LLMs
in removing specific types of test smells, identifying tool-specific
strengths and limitations. Finally, RQ4 analyzes how LLM-assisted
refactoring impacts the structural quality of test code, based on
changes in software metrics such as complexity, size, and maintain-
ability.

The study follows a structured, multi-step process as presented
in Figure 1. This study is split into three phases: pre-refactoring
activities, refactoring process, and post-refactoring analysis. In
the pre-refactoring phase, we selected the test smells detection
tools, the test smells under investigation, the repositories used
in this study, and the LLM-based tools. In the second phase, we
executed the refactorings based on pre-defined prompts. Finally,
the post-refactoring analysis consisted of running the test smells
tools detection again in the repositories refactored to verify if the
LLM-based tools removed the smells in the refactored code, as
well as analysing the results. These steps, are better detailed in the
following subsections.

3.2 Pre-refactoring Activities

In the first phase, we selected the following: (i) test smells detection
tools, (ii) test smells under investigation, (iii) repositories used in
this study, and (iv) LLM-based tools.

3.2.1 Selecting test smells detection tools. After conducting an ad-
hoc review of the literature on JavaScript test smell detection tools,
we identified three main tools: Steel [17], TestSmellDetector]Js [33],
and SNUTS.JS [25]. To determine the most suitable tools for this
study, we conducted a hands-on evaluation of each one. During
this process, we found that TestSmellDetectorfs did not provide
precise location details for the identified smells—reporting only
their presence in a given file. Then, we opted not to include this tool
in the final analysis. Based on these considerations, we selected Steel
and SNUTS]S for use in this study. Both tools demonstrated the
ability to detect a wide range of test smells and, importantly, offered
detailed information about their location in the code—an essential
aspect for the subsequent analysis and refactoring activities.

3.2.2 Selecting test smells. The selection of test smells was guided
by the classifications provided by each detection tool. Notably, there
was minimal overlap between the smells supported by SNUTS.JS
and Steel, with only five smells in common, which led us to prioritize
distinct smells from each tool. This decision aimed to increase
the diversity of test smell types analyzed, thereby enhancing the
representativeness of our study across different categories of design
issues in test code.

Improving JavaScript Test Quality with Large Language Models: Lessons from Test Smell Refactoring

SBES-IIER 2025, September 22-26, 2025, Recife, Pernambuco, Brazil

Detecting tests
smells with tools Test method
Run tests +
and Smell Run tests
coverage e classification and
Iy B
%UTSJS % coverage
& .
g :) < g (}
® 3 i SNUTSJS
Detection Testsmells Steel e
Repositories ~ smell under LLT‘;:?:“ ____________________________ Result
L mi[; 1nvasjgal]on) Sreel Analysis
Selected Refactored Detecting test
respositories Code whisperer code smells with
QDo 3 tools
Refactored
Selection E] code
: —_—
Pre-refactoring activities Prompt @ Post-refactoring analysis
Copilot Refactored
. . d
Code refactoring code

Refactoring process

Figure 1: Workflow of the Design

Beyond selecting tool-specific smells, we applied inclusion crite-
ria to ensure the smells were actionable within this study’s scope.
We focused on smells occurring within test method bodies, as these
were the primary refactoring targets. Smells extending beyond this
scope—such as General Fixture (overly generic setups) or Global
Variable (shared state across the suite)—were excluded due to the
difficulty of consistently and automatically refactoring them. We
also discarded smells lacking executable code, which offer no con-
text for refactoring, such as Comments Only Test, where the entire
test or block is commented out.

Based on these considerations, we selected ten test smells for this
study. From the SNUTS.JS tool, we included Conditional Test Logic,
Overcommented Test, Suboptimal Assert, Test Without Description,
and Sensitive Equality. From the Steel tool, we selected Assertion
Roulette, Duplicate Assert, Magic Number, Lazy Test, and Redun-
dant Print. Together, these smells span both assertion-level and
structural-level issues, offering a broad evaluation context for the
LLM-based tools.

3.2.3 Selecting repositories. We adopted a judgment sampling strat-
egy to select public JavaScript projects on GitHub, applying strict
inclusion criteria. Projects had to use JavaScript as the primary
language (>75% of the codebase), be open source, include a test
suite, and use the Jest framework—chosen for its popularity, as
confirmed by a late-2024 developer survey [14]. Only actively main-
tained repositories (last commit > Jan 1, 2024) with >5,000 GitHub
stars were considered.

Initial candidates were identified using the GitHub Search (GHS)
dataset [9], filtering by language, recency, and popularity, yield-
ing 774 repositories. A custom Python script! then applied further
filters—code composition, license, test suite presence, and Jest us-
age—reducing the set to 93. From these, we randomly selected 10
repositories, listed in Table 1.

IThe artifacts used in this study are in our replication package [https://anonymous.
4open.science/r/refactoring-smells- C3E8]

Table 1: Technical Characteristics of Selected Projects

Repository Stars JS Type

Usage(%)
atlassian/react-beautiful-dnd 33.9k 99.99% library
brookhong/surfingkeys 5.7k 75.35% browser-extension
chrisleekr/binance-trading-bot 5.3k 98.54% crypto trading bot
CodeGenieApp/serverless- 5.2k 99.75% framework
express
jackocnr/intl-tel-input 7.9k 94.99% plugin
katex/katex 19k 85.82% library
miragejs/miragejs 5.5k 95.71% framework
prettier/prettier 50.4k 82.68% formatter
shipshapecode/tether 8.5k 91.65% library
verlok/vanilla-lazyload 7.8k 83.64% library

3.24 LLM-based tools used. This study utilized two LLM-powered
tools to assist in the refactoring of test smells: GitHub Copilot Chat
(GPT-40) [13] and Amazon CodeWhisperer [35]. Both tools were
integrated into the VSCode? environment and used through inline
interactions to support smell-specific refactorings. These tools were
chosen for their seamless integration with modern development
environments and their ability to interpret natural language in-
structions in conjunction with source code—key capabilities for
effective LLM-assisted refactoring.

3.3 Refactoring Process

The second phase of the study focused on a structured and sys-
tematic refactoring process. We began by executing the original
test suites and collecting code coverage data to establish baseline
metrics for each repository. This ensured that any subsequent mod-
ifications could be validated against the projects’ original behavior.
Next, we extended SNUTS. JS to support the analysis of individual
test files, as it was originally built for entire repositories. Addition-
ally, we created a custom script to convert Steel’s output into a
structured CSV format, enabling automated processing and further
integration!.

2https://code.visualstudio.com/

https://anonymous.4open.science/r/refactoring-smells-C3E8
https://anonymous.4open.science/r/refactoring-smells-C3E8

SBES-IIER 2025, September 22-26, 2025, Recife, Pernambuco, Brazil

Once test smells were identified, we selected instances for refac-
toring according to predefined criteria, with a cap of five occur-
rences per smell type to ensure a diverse yet manageable dataset.
In total, 148 test methods were analyzed.

Refactorings were performed using zero-shot prompting, based
on structured templates informed by prior literature [8, 18, 41] and
pilot experimentation. Each prompt included contextual metadata
such as the smell category, its location in the code, a descriptive
explanation, and an explicit request for refactoring, with emphasis
on maintaining the original test behavior and improving readability.
An example of the prompt template is shown in Listing 1.

To ensure consistent communication with the LLMs, the prompt
template accommodated tool-specific variations in how smell loca-
tions were reported. When smells were identified using SNUTS.JS,
location data was expressed as a line range (e.g., startLine: X,
endLine: Y).In contrast, Steel provided more granular details, in-
cluding line number, column, and character index. This adaptability
allowed us to maintain a uniform prompt structure while retaining
the level of precision required for effective refactoring.

The refactoring process involved a combination of manual inter-
action and LLM assistance. For each selected test smell, the relevant
test file was opened in VSCode, and structured prompts were issued
via GitHub Copilot Chat (GPT-40) and Amazon CodeWhisperer. The
process involved selecting affected methods and using structured
prompts to generate targeted refactoring suggestions.

Listing 1: Prompt template

Context:I'm refactoring test smells from a test file to improve
code quality.
Issue Details:
Smell Category: {Test smell category}
Smell Location:
- Line Range: startlLine: {startLine}, endLine: {endLine}
or
- Line: {line}, Column: {column}, Index: {index}
Description:
{Detailed test smell description}
Request:
Refactor the affected code to eliminate the {Test smell category}.
Ensure the test remains correct, readable, and maintainable.

3.4 Post-refactoring Analysis

In the final phase of the study, we conducted a comprehensive
analysis to evaluate the outcomes of the refactoring process. This
phase aimed to validate the correctness of the refactored tests and
assess whether the test smells were effectively mitigated. To begin,
we re-executed the test suites for each project to ensure that the
refactored tests maintained their intended behavior. This step was
crucial for verifying that the refactoring did not introduce regres-
sions or alter the semantic integrity of the tests. In parallel, we
re-measured code coverage to detect any unintended changes in
test coverage levels caused by the transformations.

Next, we reapplied the SNUTS JS and Steel tools to the refactored
code to determine whether the test smells previously identified had
been successfully eliminated. By comparing the smell detection
results before and after refactoring, we were able to quantify the
effectiveness of each LLM-assisted transformation.

Gabriel Amaral, Henrique Nunes Gomes, Eduardo Figueiredo, Carla Bezerra, and Larissa Rocha

To deepen the analysis, we extracted software quality metrics
from both original and refactored versions using a custom JavaScript
script. This script leverages Babel® to parse code into Abstract Syn-
tax Trees (ASTs), enabling automated and consistent metric col-
lection!. The AST-based analysis computed six structural metrics:
Logical SLOC (code volume), Cyclomatic Complexity (independent
paths), Cyclomatic Density (complexity relative to size), Halstead
Effort (cognitive load), Halstead Bugs (error prediction), and Main-
tainability Index (long-term maintainability).

By integrating functional verification, test smell detection, and
structural metrics, our multi-dimensional evaluation assessed not
only behavioral preservation but also improvements in code quality
and maintainability from LLM-generated refactorings.

4 Results and Discussion

This systematic study investigated the effects of refactoring on auto-
mated tests using a sample of 148 identified cases across ten distinct
software projects. The case selection focused on seven specific test
smell categories with the following distribution: 43 instances of
Duplicate Assert, 38 of Magic Number, 23 of Lazy Test, 22 of Sub-
optimal Assert, 12 of Conditional Test Logic, 7 of Overcommented
Test, 2 of Assertion Roulette, and 1 of Test Without Description. The
absence of two smell categories, Sensitive Equality, and Redun-
dant Print, in the analyzed projects may reflect either their lower
prevalence in real-world development contexts or project teams’
adoption of preventive coding practices. The missing Suboptimal
Assert cases particularly suggest developers may favor more expres-
sive assertions or that modern testing tools inherently discourage
such problematic patterns.

We defined an evaluation framework employing four points to
assess the prompt-based refactoring impact: (i) test results changed
indicating modifications in test outcomes, (ii) coverage change mea-
suring test coverage variations, (iii) added new smell detecting
newly introduced smells through SNUTS.JS and Steel analysis, and
(iv) removed smell tracking original smell elimination. This multi-
dimensional approach enabled the simultaneous evaluation of both
functional test behavior and structural code quality improvements
resulting from the refactoring interventions.

4.1 RQ1. Test Behavior and Coverage

To assess the functional correctness of LLM-assisted refactorings,
we analyzed whether they preserved test behavior and test cover-
age. Specifically, we examined changes in test execution outcomes
(failures, deletions, or additions) and variations in coverage metrics
across all 148 refactored test methods.

Test Behavior. Copilot altered test behavior in 22 cases: 17
led to new failures or removed tests, and 5 added new passing
tests without removing the original smell. Failures were mostly
linked to Duplicate Assert (7), Conditional Test Logic (4), Suboptimal
Assert (4), and Lazy Test (2); all additions involved Lazy Test. Whis-
perer showed a similar pattern, with 21 behavioral changes—17
failures and 4 non-failure additions. Again, all non-failure additions
involved Lazy Test. The distribution of smell types among the 17
failure cases was more diverse than Copilot: Duplicate Assert (6),

3https://babeljs.io/

https://babeljs.io/

Improving JavaScript Test Quality with Large Language Models: Lessons from Test Smell Refactoring

Lazy Test (4), Conditional Test Logic (3), Overcommented Test (2),
Suboptimal Assert (1), and Assertion Roulette (1).

Test Coverage. Copilot modified coverage in only 5 samples—two
Duplicate Assert (coverage reduced) and three Lazy Test (coverage
increased, smell remained). Whisperer impacted coverage in 6
samples, spanning Duplicate Assert (2), Lazy Test (2), and Condi-
tional Test Logic (2), with mixed outcomes. Notably, complete smell
removal for Duplicate Assert consistently coincided with reduced
coverage, while for Lazy Test one sample showed increased cover-
age and the other decreased, with no successful removals. Regard-
ing Conditional Test Logic, coverage increased in one sample and
decreased in the other, with complete smell elimination.

Cross-tool insights. Among overlapping cases, Lazy Test dom-
inated behavior modifications (54.5%) but caused failures in only
33% of them. In contrast, Duplicate Assert and Conditional Test Logic,
though less frequent, led to failures in all affected samples, suggest-
ing higher structural fragility. For coverage, both LLMs reduced
it when removing Duplicate Assert, while yielding opposing out-
comes on the same Lazy Test sample—Copilot increased coverage,
Whisperer decreased.

Implications. Refactoring strategies must consider both the frequency and
inherent risk of test smells. Smells like Duplicate Assert and Conditional
Test Logic are more prone to breaking test behavior and reducing coverage,
requiring cautious or guided interventions. Conversely, Lazy Test, while
frequent, had more benign and inconsistent effects. Importantly, higher
test coverage does not always indicate meaningful improvement, especially
when smells remain. Divergent LLMs behaviors further emphasize the need
for multi-tool assessments and smell-aware LLM prompts that balance
structural impact with functional correctness.

4.2 RQ2.Introduction of New Test Smells

To assess whether the refactoring process introduced new test
smells, we conducted a post-refactoring analysis using the same
detection tools applied before transformation.

Copilot. Among the 148 refactored methods, Copilot introduced
new smells in 19 cases. The majority (17) involved the Lazy Test
smell, while the remaining 2 were new instances of Duplicate Assert.

CodeWhisperer. Whisperer introduced new smells in 24 cases,
including 20 Lazy Test, 3 Duplicate Assert, and 1 Conditional Test
Logic instance.

Cross-tool insights. Lazy Test was the only smell consistently
introduced across both tools, appearing in 16 overlapping cases.
In several of these, it co-occurred with other smells. Specifically,
Copilot yielded 6 cases of Lazy Test compounded with smells such
as Conditional Test Logic, Eager Test, or Duplicate Assert. Whisperer
showed a similar pattern in 5 instances. Table 2 shows the new
smells introduction to each smell type.

Implications. The results reveal a recurring challenge in LLM-assisted
refactoring: the inadvertent creation of new or combined smells, especially
involving Lazy Test. We plan to investigate these smell combinations in
more depth to better understand their root causes. Future approaches should
adopt smell-aware prompting and validation mechanisms that minimize
the risk of introducing new issues during refactoring.

SBES-IIER 2025, September 22-26, 2025, Recife, Pernambuco, Brazil

Table 2: Added Smells by Type

Smells C W Smells added by type

Lazy Test 17 20 Lazy Test, Assertion Roulette, Eager
Test, Duplicate Assert, Verbose State-
ment, Conditional Test Logic, Unknown
Test, Non Functional Statement

Duplicate Assert 2 3 Duplicate Assert, Magic Number

Conditional Test Logic 0 1 Conditional Test Logic

4.3 RQ3. Removal Effectiveness by Smell Type

We evaluated the effectiveness of LLM-assisted refactoring by com-
paring the number of test smells removed and the number of suc-
cessful removals, i.e., cases where the smell was eliminated without
affecting test behavior or coverage. Table 3 presents the results,
where Rem. refers to the total number of removed instances and
Succ. denotes those considered successful. For example, among 22
instances of Suboptimal Assert, Copilot removed all but succeeded
in only 18. In contrast, for Magic Number, it removed 27 out of 38,
all without introducing regressions.

Overall performance. Copilot achieved a total removal rate of
69.59%, with 58.78% considered successful. Whisperer demonstrated
slightly lower performance, with 54.05% total and 47.30% successful
removal. This 15 percentage point gap suggests that the chosen
refactoring strategy significantly influences outcomes.

Per-smell analysis. Removal effectiveness varied widely by
smell type. Both LLMs failed entirely to remove successfully Lazy
Test in any of the 23 cases. In contrast, high success rates were
observed for Suboptimal Assert (81.82% for Copilot; 95.45% for Whis-
perer) and Magic Number (71.05% for both tools). Notably, 62 refac-
tored cases were successful across both tools, with Magic Number
(28 cases) and Suboptimal Assert (22) as the most commonly and
reliably addressed smells. Additionally, the presence of unsuccess-
ful removals (10.81% for Copilot and 6.76% for Whisperer), where
smell elimination affected test behavior, highlights the need for
more sophisticated approaches that preserve original functionality.

Implications. These findings highlight the need for smell-specific strate-
gies in automated refactoring. Smells with clear syntactic signatures, such
as Magic Number, are well-suited to current LLM capabilities. In contrast,
context-sensitive smells like Lazy Test require more advanced reasoning
or prompt engineering. To enhance reliability, LLM-based tools could inte-
grate validation steps and smell-aware logic that considers structural and
behavioral complexity during refactoring. As next step, we plan a controlled
experiment with professional developers to assess whether the removals
classified as successful are indeed correct from a human perspective.

4.4 RQ4. Impact on Structural Code Quality

To assess how refactoring affected code quality, we compared six
software metrics before and after transformation: Logical SLOC,
Cyclomatic Complexity, Cyclomatic Density, Halstead Effort, Hal-
stead Bugs Estimate, and Maintainability Index. Table 4 summarizes
the results, reflecting the magnitude and direction of changes in-
troduced by each tool.

SBES-IIER 2025, September 22-26, 2025, Recife, Pernambuco, Brazil

Table 3: Results by Smell for Copilot (C) and Whisperer (W)

Smell Type Rem. Succ. | Rem. Succ.
©) ©) w) (W)

Assertion Roulette (2) 2 2 2 1
Conditional Test Logic (12) 9 6 6 4
Duplicate Assert (43) 36 27 18 12
Lazy Test (23) 0 0 0 0
Magic Number (38) 27 27 27 27
Overcommented Test (7) 6 6 5 4
Suboptimal Assert (22) 22 18 21 21
Test Without Description (1) 1 1 1 1

Table 4: Summary Statistics Before and After Refactoring

Metric State Mean Median Std. Dev. IQOR Skewness
sLoc Before 12.662 10.500 10.004 9.250 1.928
Logical Copilot 13.534 11.000 9.050 10.000 1.557
O81€aL \Whisperer 14.338 12.000 10.321 10.000 1.934
Cycloma- Before 1.622 1.000 1.505 0.000 2.708
" Copilot 1.615 1.000 1.593 0.000 2.771
1 Whisperer ~ 1.615 1.000 1.696 0.000 3.063
Cycloma- Before 15.987 14.835 9.079 16.667 0.511
tic Copilot 13.612 11.111 7.754 12.308 0.824
Density Whisperer — 12.561 11.111 6.828 8.974 0.894

Before 1559.815 489.223 3091.044 984.966 3.116

Halstead
Eésfa Copilot 1258.596 539.111 2257.025 867.238 3.995
Ot Whisperer 1578.095 629.366 2965.288 1017.767 3.430
Halstead BEfore 0.017 0.013 0.012 0.013 1.548
5 Copilot 0.017 0.015 0.011 0011 1.461
U85S Whisperer 0.018 0.014 0.012 0.011 1.538
Maintai- Before 95.739 100.000 8.137 5.806 —2.203
Copilot 95.551 100.000 7.639 5352 —1.941
nability ~Whisperer ~ 95.023 100.000 8.550 6.963 —1.940

Code size and complexity. Both tools increased Logical SLOC,
with Whisperer showing greater expansion and variability. Copi-
lot’s median rose slightly (10.5 to 11.0) with a narrower interquartile
range, while Whisperer reached a higher maximum (36 lines) and
higher post-refactoring deviation. Cyclomatic Complexity remained
stable for both, preserving control flow structure. However, Cy-
clomatic Density improved, decreasing by 2.4 points for Copilot
and 3.4 for Whisperer, indicating better distribution of complexity
relative to code size.

Cognitive effort and error-proneness. Copilot significantly
reduced Halstead Effort (by 301 points), suggesting lower cogni-
tive load. In contrast, Whisperer slightly increased it. Despite this,
both tools maintained stable Halstead Bugs estimates, with nearly
identical medians and interquartile ranges, indicating no change in
theoretical error proneness.

Maintainability. Both tools preserved high maintainability
scores (mean > 95, median = 100). Copilot yielded more consis-
tent outcomes, with a smaller drop in the mean and tighter post-
refactoring distribution. Whisperer exhibited a larger mean reduc-
tion and wider interquartile range, indicating more variability in
maintainability impact.

Gabriel Amaral, Henrique Nunes Gomes, Eduardo Figueiredo, Carla Bezerra, and Larissa Rocha

Implications. The metrics reveal three key insights: (1) Both tools preserve
core quality attributes, with minimal impact on complexity and maintain-
ability. (2) Copilot adopts a conservative approach, reducing cognitive effort
while keeping distributions tight. Whisperer applies a more aggressive
strategy, achieving better structural optimization—evidenced by density
gains—but at the cost of slightly increased code size and effort. (3) Despite
different philosophies, both tools maintain high maintainability, highlight-
ing complementary strengths in Al-assisted refactoring.

5 Threats to Validity

We discuss threats to the validity of this study Wohlin et al. [40]
in terms of internal, external, and construct validity. Regarding in-
ternal validity, a threat lies in the use of only two LLMs—GitHub
Copilot and Amazon CodeWhisperer—for refactoring test smells;
however, these were chosen due to their widespread use in code
analysis. Additionally, since refactoring by LLMs may alter test
behavior, we validated the accuracy of the refactored tests and ver-
ified whether the test smells were effectively removed. In terms of
external validity, the focus on JavaScript limits generalizability
to other dynamically typed languages (e.g., Python). Although we
analyzed only 10 projects, they were carefully selected real-world
JavaScript systems, and the inclusion of 10 distinct test smells helps
ensure a representative evaluation of JavaScript test code refactor-
ing. Finally, concerning construct validity, a limitation is that
zero-shot prompts may not handle all smell types effectively, and
LLMs may even introduce new test smells. To mitigate this, we
rigorously assessed refactoring quality by re-analyzing the outputs
using SNUTS.JS and Steel tools.

6 Conclusions

This study investigated the use of Large Language Models (LLMs)
to automatically refactor test smells in JavaScript. Evaluating 148
smell instances across ten projects, we found that both GitHub Copi-
lot Chat and Amazon CodeWhisperer can effectively remove smells
while preserving test behavior and coverage. Copilot achieved
higher success rates, while Whisperer showed stronger perfor-
mance on specific smell types. However, both tools also introduced
new smells, especially Lazy Test. These results offer a first step
toward integrating LLMs into smell-aware testing workflows, with
promising but cautious potential. As future work, we plan to con-
duct a controlled experiment with professional developers to assess
the human-perceived quality of the refactorings. We also intend to
include other prompt strategies and perform statistical analysis to
validate and deepen our current findings.

Artifact Availability

The artifacts used in this study, including the analyzed repositories,
refactoring scripts, prompts, and complete results, are available at:
https://anonymous.4open.science/r/refactoring-smells-C3E8.

Acknowledgments

This work was partially supported by FAPESB (2025), UEFS-AUXPPG
(2025), CAPES-PROAP (2025), CAPES, CNPq (Grant No. 312920/2021-
0), and FAPEMIG (Grant No. APQ-01488-24).

https://anonymous.4open.science/r/refactoring-smells-C3E8

[

References
[1] Wajdi Aljedaani, Anthony Peruma, Ahmed Aljohani, Mazen Alotaibi, Mo-

hamed Wiem Mkaouer, Ali Ouni, Christian D. Newman, Abdullatif Ghallab, and
Stephanie Ludi. 2021. Test Smell Detection Tools: A Systematic Mapping Study.
In Proceedings of the 25th Int. Conf. on Evaluation and Assessment in Software
Engineering. 170-180.

Yasaman Amannejad, Vahid Garousi, Rob Irving, and Zahra Sahaf. 2014. A Search-
Based Approach for Cost-Effective Software Test Automation Decision Support
and an Industrial Case Study. In 2014 IEEE Seventh International Conference on
Software Testing, Verification and Validation Workshops. 302-311.

Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and David
Binkley. 2012. An empirical analysis of the distribution of unit test smells and
their impact on software maintenance. In 2012 28th IEEE International Conference
on Software Maintenance (ICSM). 56-65.

Manuel Breugelmans and Bart Van Rompaey. 2008. Testq: Exploring structural
and maintenance characteristics of unit test suites. In WASDeTT-1: Ist Interna-
tional Workshop on Advanced Software Development Tools and Techniques. Citeseer,
11.

I. Burnstein, T. Suwanassart, and R. Carlson. 1996. Developing a Testing Maturity
Model for software test process evaluation and improvement. In Proceedings
International Test Conference 1996. Test and Design Validity. 581-589.

Stephen Cass. 2024. The Top Programming Languages 2024. IEEE Spectrum
(August 2024). https://spectrum.ieee.org/top-programming-languages- 2024
Accessed: 2025-04-28.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
De Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374 (2021).

[8] Jonathan Cordeiro, Shayan Noei, and Ying Zou. 2024. An Empirical Study on the

Code Refactoring Capability of Large Language Models. arXiv:2411.02320 [cs.SE]
https://arxiv.org/abs/2411.02320

Ozren Dabic, Emad Aghajani, and Gabriele Bavota. 2021. Sampling Projects
in GitHub for MSR Studies. In 2021 IEEE/ACM 18th International Conference on
Mining Software Repositories (MSR). 560—-564.

[10] Jonas De Bleser, Dario Di Nucci, and Coen De Roover. 2019. SOCRATES: Scala

radar for test smells. In Proceedings of the Tenth ACM SIGPLAN Symposium on
Scala. Association for Computing Machinery, 22-26.

Sakina Fatima, Hadi Hemmati, and Lionel Briand. 2024. Flakyfix: Using large
language models for predicting flaky test fix categories and test code repair. IEEE
Transactions on Software Engineering (2024).

Yi Gao, Xing Hu, Xiaohu Yang, and Xin Xia. 2025. Context-Enhanced LLM-Based
Framework for Automatic Test Refactoring. In International Conference on the
Foundations of Software Engineering (FSE 2025).
GitHub. 2024. About GitHub Copilot Individual.
Accessed: 2024-09-29.

Sacha Greif and Eric Burel. 2024. The State of JavaScript 2024: Testing - Jest.
https://2024.stateofjs.com/en-US/libraries/testing/. Online; accessed 25 April
2025. Survey run by Devographics from Nov 13 to Dec 10, 2024 with 14,015
responses. Results published on Dec 16, 2024..

Navid Bin Hasan, Md Ashraful Islam, Junaed Younus Khan, Sanjida Senjik, and
Anindya Igbal. 2025. Automatic High-Level Test Case Generation using Large
Language Models. arXiv preprint arXiv:2503.17998 (2025).

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo,
David Lo, John Grundy, and Haoyu Wang. 2024. Large language models for
software engineering: A systematic literature review. ACM Transactions on
Software Engineering and Methodology (2024).

Dalton Jorge, Patricia Machado, and Wilkerson Andrade. 2021. Investigating
Test Smells in JavaScript Test Code. In Proceedings of the 6th Brazilian Sympo-
sium on Systematic and Automated Software Testing. Association for Computing
Machinery, 36-45.

Takeshi Kojima, Shixiang (Shane) Gu, Machel Reid, Yutaka Matsuo, and Yusuke
Iwasawa. 2022. Large Language Models are Zero-Shot Reasoners. In Advances
in Neural Information Processing Systems, S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh (Eds.), Vol. 35. 22199-22213.

Negar Koochakzadeh and Vahid Garousi. 2010. Tecrevis: a tool for test cover-
age and test redundancy visualization. In International Academic and Industrial
Conference on Practice and Research Techniques. Springer, 129-136.

Keila Lucas, Rohit Gheyi, Elvys Soares, Marcio Ribeiro, and Ivan Machado.
2024. Evaluating large language models in detecting test smells. arXiv preprint
arXiv:2407.19261 (2024).

Rian Melo, Pedro Simdes, Rohit Gheyi, Marcelo d’Amorim, Marcio Ribeiro, Gus-
tavo Soares, Eduardo Almeida, and Elvys Soares. 2025. Agentic SLMs: Hunting
Down Test Smells. arXiv:2504.07277 [cs.SE] https://arxiv.org/abs/2504.07277
Gerard Meszaros, Shaun M. Smith, and Jennitta Andrea. [n. d.]. The Test Automa-
tion Manifesto. In Extreme Programming and Agile Methods - XP/Agile Universe
2003 (2003). Springer Berlin Heidelberg, 73-81.

https://docs.github.com

Improving JavaScript Test Quality with Large Language Models: Lessons from Test Smell Refactoring

(23]

[24

[25

IS
S

[27

[28

™~
29,

[30

[31

[32

[34

(35]

[36

[37

[38

[39

[40

[41

"~
&

[43

SBES-IIER 2025, September 22-26, 2025, Recife, Pernambuco, Brazil

Nhan Nguyen and Sarah Nadi. 2022. An empirical evaluation of GitHub copilot’s
code suggestions. In Proceedings of the 19th International Conference on Mining
Software Repositories (MSR). 1-5.

Henriquer Nunes, Eduardo Figueiredo, Larissa Soares, Sarah Nadi, Fischer Fer-
reira, and Geanderson Esteves. 2025. Evaluating the Effectiveness of LLMs in
Fixing Maintainability Issues in Real-World Projects. In 32th IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE.
Jhonatan Oliveira, Luigi Mateus, Tassio Virginio, and Larissa Rocha. 2024.
SNUTS.js: Sniffing Nasty Unit Test Smells in Javascript. In Anais do XXXVIII
Simpésio Brasileiro de Engenharia de Software. SBC, Porto Alegre, RS, Brasil,
720-726.

Fabio Palomba, Dario Di Nucci, Annibale Panichella, Rocco Oliveto, and Andrea
De Lucia. 2016. On the diffusion of test smells in automatically generated test
code: an empirical study. In Proceedings of the 9th International Workshop on
Search-Based Software Testing. Association for Computing Machinery, 5-14.
Anthony Peruma, Khalid Almalki, Christian D Newman, Mohamed Wiem
Mkaouer, Ali Ouni, and Fabio Palomba. 2020. Tsdetect: An open source test
smells detection tool. In Proceedings of the 28th ACM joint meeting on european
software engineering conference and symposium on the foundations of software
engineering. 1650-1654.

Adriano Pizzini. 2022. Behavior-based test smells refactoring: toward an au-
tomatic approach to refactoring eager test and lazy test smells. In Proceedings
of the ACM/IEEE 44th International Conference on Software Engineering: Com-
panion Proceedings. Association for Computing Machinery, New York, NY, USA,
261-263.

Adriano Pizzini, Sheila Reinehr, and Andreia Malucelli. 2023. Sentinel: A process
for automatic removing of Test Smells. In Proceedings of the XXII Brazilian Sym-
posium on Software Quality. Association for Computing Machinery, New York,
NY, USA, 80-89.

Rudolf Ramler and Klaus Wolfmaier. 2006. Economic perspectives in test au-
tomation: balancing automated and manual testing with opportunity cost. In
Proceedings of the 2006 International Workshop on Automation of Software Test.
Association for Computing Machinery, 85-91.

Stefan Reichhart, Tudor Girba, and Stéphane Ducasse. 2007. Rule-based Assess-
ment of Test Quality. 7. Object Technol. 6, 9 (2007), 231-251.

Railana Santana, Luana Martins, Tassio Virginio, Larissa Rocha, Heitor Costa,
and Ivan Machado. 2024. An empirical evaluation of RAIDE: A semi-automated
approach for test smells detection and refactoring. Science of Computer Program-
ming 231 (2024), 103013.

Andrew Costa Silva. 2022. Identificacdo e Caracterizacdo de Test Smells em
JavaScript. Instituto de Ciencias Exatas e Informatica - Pontificia Universidade 138
(2022), 52-81.

Elvys Soares, Marcio Ribeiro, Rohit Gheyi, Guilherme Amaral, and André Santos.
2023. Refactoring Test Smells With JUnit 5: Why Should Developers Keep Up-to-
Date? IEEE Transactions on Software Engineering 49, 3 (2023), 1152-1170.

A. Team. 2023. Copilotchat. https://docs.aws.amazon.com/codewhisperer/
Accessed: 2025-04-25.

Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco
Oliveto, Andrea De Lucia, and Denys Poshyvanyk. 2016. An empirical investiga-
tion into the nature of test smells. In Proceedings of the 31st IEEE/ACM Interna-
tional Conference on Automated Software Engineering. Association for Computing
Machinery, 4-15.

Tassio Virginio, Luana Martins, Larissa Rocha, Railana Santana, Adriana Cruz,
Heitor Costa, and Ivan Machado. 2020. JNose: Java Test Smell Detector. In Pro-
ceedings of the XXXIV Brazilian Symposium on Software Engineering. Association
for Computing Machinery, 564-569.

Tassio Virginio, Luana Martins, Railana Santana, Adriana Cruz, Larissa Rocha,
Heitor Costa, and Ivan Machado. 2021. On the test smells detection: an empirical
study on the JNose Test accuracy. Journal of Software Engineering Research and
Development 9, 1 (Sep. 2021), 8:1 — 8:14.

Tongjie Wang, Yaroslav Golubev, Oleg Smirnov, Jiawei Li, Timofey Bryksin, and
Iftekhar Ahmed. 2021. PyNose: A Test Smell Detector For Python. In 2021 36th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
593-605.

Claes Wohlin, Per Runeson, Martin Hést, Magnus C. Ohlsson, Bjérn Regnell, and
Anders Wesslén. 2012. Experimentation in software engineering. Springer Science
& Business Media.

Tingyu Xie, Qi Li, Jian Zhang, Yan Zhang, Zuozhu Liu, and Hongwei Wang. 2023.
Empirical Study of Zero-Shot NER with ChatGPT. arXiv:2310.10035 [cs.CL]
https://arxiv.org/abs/2310.10035

Shengcheng Yu, Chunrong Fang, Yuchen Ling, Chentian Wu, and Zhenyu Chen.
2023. LLM for Test Script Generation and Migration: Challenges, Capabilities,
and Opportunities. In 2023 IEEE 23rd International Conference on Software Quality,
Reliability, and Security (QRS). 206-217.

Albert Ziegler, Eirini Kalliamvakou, X Alice Li, Andrew Rice, Devon Rifkin,
Shawn Simister, Ganesh Sittampalam, and Edward Aftandilian. 2024. Measuring
GitHub Copilot’s Impact on Productivity. Commun. ACM 67, 3 (2024), 54-63.

https://spectrum.ieee.org/top-programming-languages-2024
https://arxiv.org/abs/2411.02320
https://arxiv.org/abs/2411.02320
https://docs.github.com
https://2024.stateofjs.com/en-US/libraries/testing/
https://arxiv.org/abs/2504.07277
https://arxiv.org/abs/2504.07277
https://docs.aws.amazon.com/codewhisperer/
https://arxiv.org/abs/2310.10035
https://arxiv.org/abs/2310.10035

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Tools for Test Smell Detection
	2.2 LLMs for Tests

	3 Study Design
	3.1 Goals and Research Questions
	3.2 Pre-refactoring Activities
	3.3 Refactoring Process
	3.4 Post-refactoring Analysis

	4 Results and Discussion
	4.1 RQ1. Test Behavior and Coverage
	4.2 RQ2. Introduction of New Test Smells
	4.3 RQ3. Removal Effectiveness by Smell Type
	4.4 RQ4. Impact on Structural Code Quality

	5 Threats to Validity
	6 Conclusions
	Acknowledgments
	References

