Aged to Perfection? Analyzing the Impact of Years of Experience
on Code Quality

Jefferson G. M. Lopes
jeffersonmoreira@dcc.ufmg.br
Federal University of Minas Gerais
(UFMG)

ABSTRACT

The association between developer experience and code quality is a
significant debate within the software engineering community. To
explore this relationship, we quantitatively evaluated 401 GitHub
software repositories in JavaScript, PHP, and Python, maintained by
98 developers with Workana profiles - a freelancing platform. For
quality assessment, we rely on SonarQube, a widely adopted tool
in both industry and academia. We analyzed several dimensions,
such as the programming languages and severity (high, medium,
and low) of maintainability and reliability issues. We observed that
developers with the highest level of experience presented code
with fewer issues. However, developers with intermediate level of
experience presented more code quality issues than their novice
and experienced counterparts, revealing a more complex and nu-
anced relationship between level of experience and code quality.
Despite that, our analysis did not indicate significant statistical
differences between the density of the issue at varying levels of
experience, suggesting that other factors may also contribute to
code quality outcomes. This study contributes to an open question
with implications for software engineering recruitment and code
quality assurance. We provide a new dataset of developers and their
projects based on recent data. All extracted data and accompanying
scripts are available, aiming to enable further replications of our
study.

CCS CONCEPTS

« Information systems — Information retrieval; Web mining; «
Social and professional topics — Professional topics.

KEYWORDS

Code quality, developer experience, repository mining

1 INTRODUCTION

The level of experience developers possess may affect the quality
of the software they produce. It is often assumed that increased
individual experience correlates with enhanced competency [14].
However, the association between developer experience and code
quality is a significant debate within the software engineering com-
munity [7, 33, 34, 36]. The definition of software quality may be
related with different code aspects, such as readability [6], tech-
nical debts [3], bug frequency [16], and adherence to coding stan-
dards [46]. Similarly, experience of developers can be defined in
several ways, such as the number of years working in the field [31]
and the contributions made to software projects [20]. Regardless of
their definitions, a common belief is that increasing individual expe-
rience is a way to achieve better software products; e.g., a program
which is easier to comprehend and to maintain. For this reason,

Johnatan Oliveira
johnatan.oliveira@ufla.br
Federal University of Lavras (UFLA)

Eduardo Figueiredo
figueiredo@dcc.ufmg.br
Federal University of Minas Gerais
(UFMG)

companies focus on evaluating work experience and educational
backgrounds, as these factors enhance hiring recommendations
through recruiters perceptions [44]. As a result, software develop-
ers nowadays have reported their previous experiences in freelance
platforms, such as Workana [49], and in professional social net-
works, such as LinkedIn [1].

In fact, several studies have explored the relationship between
the experience of developers and the quality of code they pro-
duce. However, a recent literature review has found conflicting
results [24] and other prior investigations yield inconsistent conclu-
sions [3, 7, 12, 24, 34, 36, 50]. For instance, Dieste et al. [12] found
experience failed to predict code quality among 126 programmers,
while Alfayez et al. [3] observed experienced developers introduced
less technical debt in 38 Apache systems. Furthermore, several of
these studies were conducted more than ten years ago, according
to a comprehensive literature survey [24], and thus may not accu-
rately represent present-day software development methodologies
and practices.

Divergent findings prompted us to conduct a more detailed inves-
tigation with the objective of investigating the influence of devel-
oper experience on code quality in contemporary development en-
vironments. To explore this relationship, we examined 401 GitHub
repositories from 98 Workana developers with varying self-reported
JavaScript, PHP and Python years of experience. Using SonarQube,
we assessed quality across languages, issue types maintainability
and reliability, alongside their severities. With a formed dataset, we
applied statistical methods to understand the impact of different
levels of years of experience in the issue density of the developers.
Additionally, we independently analyze the severity of the issues,
their type and the language used by the developers to further im-
prove isolation between the variables. Interestingly, the statistical
analysis did not reveal a substantial correlation between experience
levels and issue density across all dimensions, indicating that other
elements impact quality. Our findings point towards a complex,
non-linear association between various aspects of code quality and
developer experience. Consistently, we found that developers with
the highest analyzed experience presented fewer code quality is-
sues compared to their peers. Nevertheless, mid-level developers,
those with three to five years of experience, showed a higher occur-
rence of code quality issues than both more and less experienced
developers, underscoring a complex non-linear dynamic.

In conclusion, this research emphasizes the necessity for addi-
tional investigations to elucidate and extend the understanding
of the correlation between years of experience and code quality,
potentially by incorporating new explanatory variables. Our con-
tributions are threefold. Firstly, we address an unresolved issue

SBES 25, September 22-26, 2025, Recife, PE

that has significant implications for recruitment in software engi-
neering and for practices concerning code quality. Secondly, we
demonstrate developer portfolios as a feasible source of code exam-
ples and other pertinent data, such as years of experience, given
that some portfolios are connected to social professional networks.
Lastly, we provide a new dataset, which links Workana profiles to
GitHub projects, complete with comprehensive replication materi-
als. 1.

2 BACKGROUND

This section defines the main variables and concepts used and their
relevance to the study. Section 2.1 reviews the concept of experience
and how it is measured in this work. Section 2.2 discusses code
quality. Finally, Section 2.3 explores social professional networks
and portfolios and their applicability in this study.

2.1 Quantifying Experience

In professional contexts, employers and organizations often equate
experience with competency and expertise [28], treating it as a
critical factor in hiring and career advancement. This emphasis
holds particular weight in software engineering, where technical
proficiency and practical problem-solving skills directly influence
outcomes [8, 37]. Yet, research on how experience affects code
quality reveals inconsistencies. A recent literature review [24] in-
vestigating this relationship identifies two findings central to our
work. First, studies operationalize experience in different ways. Re-
searchers typically define it as either career experience (years of
formal education or industry work) or project experience (quantita-
tive contributions to a project, such as commit frequency or lines of
code written). Second, only 3 of the 18 analyzed studies [27, 45, 50]
used career experience as a predictor of code quality. Among these,
two [45, 50] link greater career experience to improved code qual-
ity, while the third [27] argues that it cannot serve as a standalone
measure.

This discrepancy and the lack of relevant studies point to a gap
in understanding experience. To further investigate this, we use
the definition of experience as self-reported years of active pro-
gramming in a particular programming language as an independent
variable. By focusing on this narrow definition of experience, our
study addresses the limited attention Career Experience receives
in existing research. Clarifying its role could contribute to soft-
ware engineering recruitment and management, where experience
metrics can influence hiring decisions and team structure.

2.2 Code Quality

Code quality plays a crucial role in a product’s success for several
reasons. First, high-quality code is typically more reliable and less
prone to bugs, leading to a better user experience and reduced main-
tenance costs [19, 30]. Second, well-structured and maintainable
code allows easier updates and feature additions, faster iteration,
and adaptation to market demands [38]. The ability of a developer
to write high-quality code can affect their career success, as it en-
hances their reputation among colleagues and potential employers.
For instance, Li et al. [23] suggests that code quality is a key factor
in the evaluation of software engineers.

IReplication package: https://doi.org/10.6084/m9.figshare.28306316.v1

Jefferson G. M. Lopes, Johnatan Oliveira, and Eduardo Figueiredo

In evaluating software quality, industry standards provide struc-
tured frameworks to guide assessment processes. Among these,
ISO/IEC 25010 [2] serves as a globally recognized benchmark with
eight core attributes to comprehensively evaluate software sys-
tems. These include functional suitability (alignment with require-
ments), performance efficiency (resource optimization), compat-
ibility (seamless integration with other systems), usability (user
effectiveness), reliability (consistent operation under defined condi-
tions), security (data protection), maintainability (ease of modifi-
cation), and portability (adaptability across environments). These
criteria collectively ensure that the software meets the technical,
operational, and user-centric benchmarks.

In this study, we focus on the maintainability and reliability di-
mensions of ISO/EIC 25010 [2] and rely on SonarQube to measure
them. Although SonarQube can detect security issues, incomplete
rule coverage prevented us from using security as a metric. By
scanning code for vulnerabilities, redundancies, and complexity,
SonarQube aligns with ISO’s maintainability and reliability met-
rics: for instance, unused code or excessive complexity signals
maintainability concerns, while error-prone logic flags relate to
reliability [32]. In this context, we use metrics from SonarQube as
dependent variables of years of experience. The platform classifies
issues into three severity levels, ranging from critical flaws to minor
inefficiencies with a lower risk. As defined by SonarQube, the code
quality aspects evaluated in this study are the following.

e Maintainability: Maintainability issues affect the ease with
which code can be modified or extended, often relating to
code smells or complex structures. Addressing these issues
can reduce technical debt and improve code comprehension.

o Reliability: Reliability issues refer to elements of code that
could lead to unexpected behavior or system failures. Ensur-
ing high reliability is essential for maintaining the stability
and correct operation of the software system.

Additionally, each issue that SonarQube encounters, being a
maintainability or a reliability issue, is classified in the following
levels of severity.

e High Severity: This category includes critical issues that
can lead to functional errors or security vulnerabilities, re-
quiring immediate attention to maintain the stability of the
application.

e Medium Severity: This level includes issues that, while less
urgent than high severity issues, may still affect functionality
or performance and warrant prompt resolution to prevent
escalation.

o Low Severity: These issues are generally cosmetic or related
to code style, affecting readability or maintainability without
posing immediate functional risks.

2.3 Social Professional Networks and Portfolios

Social professional networks (SPNs) are online platforms designed
to foster connections among professionals for career-oriented pur-
poses. These networks enable users to create detailed profiles, es-
tablish connections, share industry-relevant information, and par-
ticipate in discussions within their respective fields. Brandao and
Moro [5] offer a comprehensive survey and taxonomy of SPNs, ex-
ploring their various types, definitions, and applications. Platforms

Aged to Perfection? Analyzing the Impact of Years of Experience on Code Quality

such as Workana and GitHub exemplify SPNs under this definition.
On Workana 2 developers can list their expertise across various
skills, such as React, JavaScript, Java, and Web Design, along with
their corresponding years of experience, to connect with potential
employers. GitHub 3, on the other hand, serves as a widely used plat-
form to host code repositories, contribute to open source projects,
and engage in professional interactions. Notably, many Workana
profiles feature links to corresponding GitHub accounts, which
serve as portfolios. These portfolios consist of curated projects
designed to demonstrate the technical skills of a developer, thus
improving their prospects of employment [13]. This research relies
on Workana and Github SPNs to assemble a dataset designed to
evaluate the relationship between developer experience and code
quality. It achieves this by mining GitHub portfolios and extracting
developers’ self-reported experience from Workana.

3 RESEARCH METHOD

Figure 1 describes the overall data collection process. We rely on
Workana to collect developer profiles, on GitHub to collect code
samples, and on SonarQube to measure code quality. Section 3.1
explains the study goal and research questions. Section 3.2 presents
the Workana freelance platform and developer profiles. Section
3.3 explains how the collection of developer’s GitHub reposito-
ries is collected. Section 3.4 reveals the collection and filtering of
SonarQube quality metrics. Section 3.5 describes how we related
Workana profile data with GitHub and SonarQube metrics. Section
3.6 describes the method applied to analyze the data.

3.1 Study Goal and Research Questions

The primary goal of this study is to examine the relationship be-
tween developer experience and code quality. By investigating

profiles from the Workana freelancing platform and analyzing code

repositories on GitHub, this study aims to uncover to what ex-
tent years of coding experience on a given set of programming

languages, as self-reported by developers, might correlate with

various code quality metrics obtained through SonarQube. The

following research questions guide the study:

RQ1: What is the impact of developer experience on code quality

across programming languages?

RQ2: How does the type of code quality problems vary across

developer experience levels?

RQ3:How does the severity of code quality problems (High, Medium,
Low) vary across developer experience levels?

RQ1 inspects how developer experience and code quality vary
across different programming languages. RQ2 and RQ3 go deeper by
specifically examining the impact of the type and severity of code
quality issues. This set of research questions is designed to mini-
mize overgeneralization, ensuring a more accurate and meaningful
analysis.

3.2 Workana Profile Collection

Our analysis begins by extracting profiles of developers from Workana,

focusing on reported skills and years of experience. Each selected

https://www.workana.com
3https://github.com

SBES 25, September 22-26, 2025, Recife, PE

profile also includes a link to the developer’s GitHub profile, en-
abling further investigation. A customized variant of EXTRACT-
PRO [15] was utilized for the data gathering process. This tool
is intended for collecting Workana profiles and GitHub reposito-
ries. EXTRACTPRO locates Workana profiles using a search term,
navigates through all resulting pages, and retrieves essential data
including years of language experience, profile description, demo-
graphics, and a link to a GitHub profile, if available. The search
term ’github.com’ was employed to locate profiles with a GitHub
link associated. Once the GitHub profiles were identified, they were
downloaded into a local directory. Although EXTRACTPRO offers
a web interface, we only rely on its extraction capabilities.

The Workana profile data are stored in a CSV file and subse-
quently imported into a Pandas DataFrame [29] for processing. Us-
ing regular expressions, we parse the skills data to identify program-
ming languages and corresponding years of experience. Workana
displays experience levels per programming language in five cat-
egories, 1<, 1-3, 3-5, 5-10, >10 years of experience. To ensure
sufficient sample sizes and clearer distinctions among skill lev-
els, we consolidated Workana'’s original experience categories into
fewer bins 3<, 3-5, >5 years of experience, following guidelines on
avoiding small cell sizes and improving statistical power according
to our dataset [9, 21, 47]. In total, we collected all 266 Workana
profiles, returned with the GitHub profile link, and stored their
description and a list of skills. The next step filters the skills into a
defined programming language set.

3.3 GitHub Repository Collection

For each developer, we scan their downloaded GitHub profiles and
select repositories created within the last five years (from 2019
onward) that match the target programming languages (JavaScript,
PHP, or Python). To ensure we analyze only the code authored by
the developer being inspected, we exclusively download reposito-
ries with a single author, which must be the owner of the GitHub
profile, avoiding complications related to team dynamics, different
contributions of developers outside the sample, and other issues.
We downloaded up to five repositories per developer to have a man-
ageable dataset. A total of 552 repositories were collected matching
the specified criteria.

3.4 SonarQube Scan and Quality Evaluation

SonarQube is applied to evaluate the downloaded GitHub repos-
itories. These repositories are organized in a specified directory,
with analysis restricted to files that have the selected program-
ming language extensions: .php for PHP, .py for Python, and .js for
JavaScript. In this study, we focus on public profiles featuring three
specific skills—JavaScript, PHP, and Python—linked to an associated
GitHub repository. We selected those languages following a pilot
study, which identified them as the most commonly used in the
collected profiles and compatible with SonarQube analysis.

We derive metrics from SonarQube reports and export them as
spreadsheets summarizing code issues and lines of code (NKLOC)
per file type. The code issues are of the type Maintanability and
Reliability, and are further classified into the severity levels High,

https://www.workana.com
https://github.com

SBES 25, September 22-26, 2025, Recife, PE

Jefferson G. M. Lopes, Johnatan Oliveira, and Eduardo Figueiredo

[226 Profiles [552 Repositories]
‘Workana Profile Developers with a GitHub Repository Most recent GitHub
Collection public GitHub Profile Collection proiﬂcs
v Q Data Analysis
. Match of Self-
SonarQube Scan and Quality Rn_:posnory level \ Declared Skills and - [98 Profiles]
Evaluation metrics per Language Metrics
[401 Repositories]

Figure 1: Process to collect profiles and repositories

Medium and Low [40, 42]. The NKLOC metric returned by Sonar-
Qube only counts code lines that contain at least one character that
is not a blank space, tabulation, or comment [41].

3.5 Matching of Self-Declared Skills and Metrics

Upon completion of the SonarQube analysis, the data from Workana
and SonarQube are merged using GitHub usernames as identifiers.
This matching process generates a dataset that links developer ex-
perience levels (from Workana) with corresponding code quality
metrics (from SonarQube). A portion of the initial collection of
Workana profiles did not declare experience in any of the stud-
ied languages or had GitHub profiles that did not contain code in
the analyzed languages. After excluding them, the final collected
dataset contained 98 Workana profiles and 401 repositories.

Table 1 displays a summary of the data collected. To assess the
representativeness of the collected profiles, we extracted and cate-
gorized demographic data from their Workana profiles, considering
country of origin and their self-reported role in software devel-
opment. The self-reported role is an open-ended section where
individuals can input any response. Consequently, we consolidated
these roles, taking into consideration translations and various other
differences. Among the 98 profiles, 28 identified themselves as Full
Stack Developers, 17 as Software Developers, 14 as Web Developers,
9 as Frontend Developers, and 6 as Backend Developers. The other
24 profiles were categorized as "Other" due to the diversity of roles,
which included titles such as CTO, Analyst, and Data Scientist.
Despite the range of roles, all individuals provide software devel-
opment services and have expertise in programming languages,
along with GitHub portfolios* showcasing their work. Positions
reported fewer than 5 times were included in the Other category.
Regarding their locations, 52 individuals are from Brazil, 9 from
Argentina, 6 from Venezuela, 4 from India, 4 from Malaysia, 3 from
Turkey, 3 from Chile, and 17 are from various other countries, such
as Israel, China, and Colombia, among others. The "Other" category
combines countries with fewer than 3 entries.

4 A portfolio, in this context, is not a normal set of GitHub repositories as they are linked
by developers on their Workana profiles specifically to showcase skills and attract
clients, suggesting the developer intends them to be viewed as a curated representation
of their professional abilities, unlike potentially less curated profiles not linked for
commercial purposes

3.6 Data Analysis

The data analysis phase began with a detailed refinement and de-
scriptive statistical assessment of the dataset. We established a
threshold of 1,000 lines of code in each programming language
per developer to ensure that each sample included in the analysis
sufficiently represented the developer’s coding practices. Based on
this threshold, we calculated an issue density metric, representing
the number of code issues per a 1,000 non-commented lines of code
for each programming language. Issue density metrics are useful for
normalizing project size variations when analyzing issues [11, 25].
This metric allowed us to evaluate each developer’s contribution to
code quality by quantifying the rate of issues in their code. Each
developer-language pair was treated as an individual data point,
enabling us to include developers with varying experience levels
across different programming languages. For example, if the Devel-
oper 1 has the following characteristics: an average issue density
of 10.5 with more than 5 years of experience in Python, an average
issue density of 70.1 with less than 3 years of experience in PHP,
and an average issue density of 2.2 with less than 3 years of expe-
rience in JavaScript, then the Developer 1 will be treated as three
separate data points, one for each language and experience pair.
This technique was possible due to high independence of the issue
density of one language over the others for the same developer in
our dataset. In that sense, a developer that have high issue density
in JavaScript, for example, may not necessarily have high issue
density in Python, i.e. one language density has little influence over
the other for the same developer.

A normality test was performed on the issue density data points
for each language and on the overall issue density per developer.
The results indicated that all the analyzed distributions do not
follow a normal distribution. As a result, all subsequent statistical
analyses rely on non-parametric tests.

To enhance the robustness of our analysis, we applied the In-
terquartile Range (IQR) method to detect and exclude outliers. For
each programming language, experience level and issue type we
calculated the first quartile (Q1) and third quartile (Q3) of the issue
density values. The IQR is defined as the difference between Q3
and Q1. We established lower and upper bounds for acceptable
data as Q1 - 1.5*IQR and Q3 + 1.5"IQR, respectively. We classified
data points falling outside these bounds as outliers and excluded
from further analysis. This approach minimized the influence of

Aged to Perfection? Analyzing the Impact of Years of Experience on Code Quality

SBES 25, September 22-26, 2025, Recife, PE

Table 1: Raw data summary

Severit T
Programming Language Years of Experience everty ype Total Issues NKLOC Developers
High Medium Low Maintainability Reliability

<3 4831 2515 1376 8122 1837 8722 225079 48

JavaScript 3-5 2855 1252 833 4718 1035 4940 99091 15
>5 179 284 128 550 211 591 24758 13

<3 324 214 184 701 27 722 20324 16

Python 3-5 48 177 194 418 6 419 6662

>5 113 186 227 525 3 526 21830 1

<3 504 473 1674 2471 221 2651 46267 26

PHP 3-5 375 586 1290 1817 449 2251 70923 7

>5 186 277 740 1042 182 1203 19266 9

extreme values, allowing for a more accurate representation of
central tendency and variability within the dataset.

We analyzed the correlations between overall issue density, total
issue density by programming language, issue density by type
(Reliability and Maintainability) and issue density by severity (High,
Medium, Low) to answer the research questions. For this analysis,
we employed the Kruskal-Wallis test [22], a non-parametric test
that assesses whether the median ranks of different groups come
from the same population. Formally, the Kruskall-Wallis test has
following hypotheses:

e Null Hypothesis (Hy): The median ranks of issue density
are equal across all groups (e.g., less than 3 years of ex-
perience, 3 to 5 years of experience, more than 5 years of
experience), indicating no statistically significant differences.

e Alternate Hypothesis (H;): At least one group has a dif-
ferent median rank of issue density, indicating a statistically
significant difference among the groups.

We adopted a significance level of 0.05, as conventionally used
in statistical hypothesis testing [10, 26], to determine whether to
reject the null hypothesis. A p-value below this threshold indicates
sufficient evidence to reject the null hypothesis in favor of the
alternative, suggesting that the population medians are not equal.

4 RESULTS AND DISCUSSION

This section addresses the research questions by reporting and
discussing the results of this study.

4.1 Overall Analysis

Table 2: Average of Issue Densities by Years of Experience

Years of Experience
Issues Counted P

<3 3-5 5
All Issues 45.0 56.6 28.4
Maintainability | 42.2 49.8 23.5
Reliability 49 67 76
High 105 114 7.0
Medium 125 209 119
Low 141 234 10.8

Table 2 presents the average issue density categorized by years
of experience. When considering all issues and programming lan-
guages, the average issue density is 45.0 for developers with less
than three years of experience, 56.6 for those with three to five
years, and 28.4 for those with more than five years. These results
challenge the assumption that increased years of experience in
programming directly correlate with improved code quality. In-
stead, the data suggests a non-linear relationship between years of
experience and code quality. A similar pattern is observed when
issue types and severities are considered in isolation. Developers
with less than three years of experience have a lower average issue
density compared to those with three to five years of experience.
The exception to this trend is observed in reliability-related issues,
where issue density increases with greater developer experience.
Finally, we observed that more experienced developers consistently
posses alower issue density when compared to the other experience
levels.

The Kruskal-Wallis test yielded a p-value of 0.15. This result
indicates that the null hypothesis cannot be rejected at standard
significance levels. Although a non-linear relationship is apparent
in the data, the statistical test suggests that there is insufficient
evidence to conclude a significant difference in issue density across
the years of experience analyzed.

4.2 Analysis of Programming Languages

RQ1: What is the impact of developer experience on code quality
across programming languages?

Figure 2 shows the total issue density by years of experience
and classified per programming language. The Y axis displays the
issue density. The X axis shows the three categories of years of
experience in a given language. Each bar represents a programming
language, either Python, PHP or JavaScript. Figures 3 to 7 follow
the same configuration®.

Analyzing each programming language individually reveals dis-
tinct and intriguing patterns when it comes to issue density and
the relationship with developer experience. For Python, the trend
aligns closely with the broader observation made throughout the
overall analysis: issue density tends to increase as developers gain

SNote that some categories, such as 'Python > 5 years of experience’, contain small
samples (n=1), which may compromise the interpretation of the visual distribution in
this group.

SBES 25, September 22-26, 2025, Recife, PE

125 [JavaScript
I PHP
100 B Python

Issue Density (KLOC)
o
I

<3 3-5 >5
Years of Experience

Figure 2: Total issue density by years of experience

experience up to the five-year mark and after it begins to decline
again. This suggests that developers may be encountering a more
manageable set of issues after reaching their highest level of expe-
rience.

In contrast, PHP shows a different pattern; the issue density
remains relatively stable for developers with less than three years
of experience through to five years. This stability is noteworthy
and might imply that PHP developers face a consistent level of chal-
lenges regardless of their growing experience, although a decline
is observed among those with more than five years of experience.
This could indicate an effect where seasoned developers are better
equipped to tackle complex issues, thus reducing the frequency of
problems reported.

JavaScript presents a different trend, exhibiting a gradual de-
crease in issue density as experience increases, ranging from those
with less than three years of experience to developers who have
worked with the language for over five years. The decline might
reflect a learning curve that allows developers to streamline their
coding practices and avoid common pitfalls as their experience
deepens. This results for JavaScript better align with a common
belief that the quality positively correlates with experience.

Moreover, the Kruskal-Wallis p-values for Python, PHP, and
JavaScript stand at 0.28, 0.90, and 0.29, respectively. These values
displays the lack of statistically significant differences between
the groups. Despite the visible conflicting trends observed in issue
density across the languages, the statistical results indicate that
we cannot reject the null hypothesis at conventional significance
levels. In essence, these data suggest that we did not find any strong
evidence in issue density patterns when analyzing each program-
ming language individually, demonstrating the complexity of the
relationships between experience and reported issues in software
development.

RQ1 summary: The distribution of code quality problems varies
across programming languages. Python shows a non-linear trend,
with issue density increasing and then decreasing, whereas PHP
remains relatively stable for low and moderate experience. The
common belief that quality continuously increases with expe-
rience was only verified for JavaScript. The more experienced

Jefferson G. M. Lopes, Johnatan Oliveira, and Eduardo Figueiredo

developers consistently display less code quality issues. The series
are not statistically different (p > 0.05).

4.3 Analysis of Issue Types

RQ2: How does the type of code quality problems vary across de-
veloper experience levels?

To answer RQ2, this section splits the analysis for type of issue:
Maintainability and Reliability.

125 [JavaScript
1 PHP
100 B Python

Issue Density (KLOC)
>
I

25 W —
0
<3 3-5 >5
Years of Experience

Figure 3: Maintanability issue density by years of experience

4.3.1 Maintainability Issue Density. Figure 3 presents an anal-
ysis of Maintainability issue density correlated with varying levels
of developer experience. Developers with less than three years of
experience reported an average maintainability issue density of
42.2 issues per NKLOC, which rose to 49.8 for those with three to
five years of experience. In contrast, developers with over five years
of experience experienced a notable reduction, with an average of
just 23.5 issues per NKLOC. This finding, again, illustrates a non-
linear relationship between developer experience and the density
of Maintainability issues.

An examination of specific programming languages revealed nu-
anced differences. Python adhered to the overall trends previously
identified, showing a lower count in issues for developers with less
than three years of experience, an increase for those with three
to five years, and a significant drop for those with more than five
years. On the other hand, PHP and JavaScript data agreed with the
common belief that more experience results in better code quality.
Both PHP and JavaScript showed a marked and steady decline in
maintainability issue density as developer experience increased.

Statistical analysis conducted with the Kruskal-Wallis test yielded
p-values of 0.17 for JavaScript, 0.74 for PHP, 0.28 for Python, and
0.08 for all languages collectively. These findings suggest that while
certain trends are observable, the differences in maintainability
issue density across various experience levels are not statistically
significant at conventional thresholds. This indicates that while fluc-
tuations and improvements can be noted, they do not provide con-
clusive or uniform evidence regarding maintenance issues across
the programming languages analyzed.

4.3.2 Reliability Issue Density. Figure 4 illustrates the Reliabil-
ity issue density based on years of experience. This analysis reveals

Aged to Perfection? Analyzing the Impact of Years of Experience on Code Quality

— 30 M [JavaScript
g 1 PHP
g B Python
> 20
j
3 1
o 10 [
g &

0 - —— Ll

<3 3-5 >5

Years of Experience

Figure 4: Reliability issue density by years of experience

the most drastical variations among the series. For Reliability issues,
the average issue density shows a gradual increase with experience:
developers with less than three years of experience encounter 4.9
issues per NKLOC, while those with three to five years report 6.7
issues, and those with more than five years experience an increase
to 7.6 issues. This trend, encompassing all programming languages,
contrasts with the non-linear patterns observed in other categories.
A significant factor in these findings is PHP, which has a higher
absolute issue density compared to other languages, influencing
the overall average in a notable way.

When examining the languages individually, distinct trends
emerge. Python exhibits a markedly lower absolute issue density
that declines with increased experience. In contrast, PHP shows a
significant increase in issue density as developers gain experience.
JavaScript displays a non-linear relationship: higher issue counts
during the initial three years, followed by stability for those with
three to five years, and a slight increase for developers with over
five years of experience. The variability in issue densities across
different languages suggests the presence of underlying factors,
such as a programming language’s propensity to generate issues
in SonarQube. For instance, Python may favor simpler constructs
that lead to fewer mistakes by developers.

Nevertheless, the results from the Kruskal-Wallis test indicate
no statistically significant differences, with p-values of 0.84 for
JavaScript, 0.58 for PHP, 0.60 for Python, and 0.99 when all lan-
guages are considered together. While the individual trends are
evident, the marginal differences in issue counts among program-
ming languages do not provide sufficient evidence for meaningful
distinctions.

RQ2 summary: Code quality problems differ by issue type and
language. Maintainability issues exhibit a non-linear pattern,
with density increasing before declining significantly with more
than five years of experience. Reliability issues can increase or
decrease over experience depending on the programming lan-
guage analyzed. However, the correlation tests did not yield a
statistical significant relationship (p > 0.05) for both types of
issues.

SBES 25, September 22-26, 2025, Recife, PE

4.4 Analysis of Issue Severity

RQ3:How does the severity of code quality problems (High, Medium,
Low) vary across developer experience levels?

In this section, we separated our analysis in three categories:
High, Medium and Low Severity Issues.

(2]
o

[JavaScript
[PHP
EEE Python

N w A,
o o o o

Issue Density (KLOC)

L
|

<3 3-5 >5
Years of Experience

Figure 5: High severity issue density by years of experience

4.4.1 High Severity Issue Density. Figure 5 displays the average
issue density by years of experience for High severity issues. The
average issue density for developers with less than three years
of experience was 10.5 issues per NKLOC, increasing to 11.4 for
those with three to five years of experience and then decreasing
to 7.0 for those with more than five years of experience across all
programming languages combined. This pattern again indicates a
non-linear relationship between experience and high-severity issue
density.

Examining each language individually revealed mixed results.
Python exhibited a consistent decline in issue density with in-
creasing experience, dropping from an average of 11.36 issues per
NKLOC for developers with less than three years of experience to
5.18 for those with more than five years. PHP showed relatively
stable issue densities across experience levels, with averages of 7.50
for less than three years, 8.73 for three to five years, and 8.34 for
more than five years. JavaScript presented a peak in issue density
for the three to five years category, with averages of 12.67, 18.54,
and 7.41 for less than three, three to five, and more than five years
of experience, respectively.

The observed non-linear relationship between developer expe-
rience and High severity issue density indicates that increased
experience does not uniformly lead to fewer critical issues. The
rise in issue density among developers with three to five years of
experience may reflect a phase where they are engaged in more
complex or risk-prone tasks, potentially increasing the likelihood of
introducing High severity issues. Language-specific trends further
suggest that the nature of the work and the programming language
influence this relationship. In Python, the consistent decline in issue
density with experience implies that proficiency gains effectively
reduce critical issues. In contrast, PHP’s stable issue density across
experience levels suggests that other factors, such as the types of
projects, may mitigate the impact of experience on High severity
issues. The peak in JavaScript issue density for mid-level developers
could be due to the complexity of JavaScript applications or the
specific challenges associated with intermediate-level tasks in that

SBES 25, September 22-26, 2025, Recife, PE

language. The Kruskal-Wallis test results yielded p-values of 0.40
for JavaScript, 0.80 for PHP, 0.60 for Python, and 0.48 for all lan-
guages combined, indicating no statistically significant differences
across experience levels within each language.

[JavaScript

g 6o = PHP
< B Python
Z40
2 —
c
[
o
© 20
>
g @ m _
0

<3 3-5 >5
Years of Experience

Figure 6: Medium issue density by years of experience

4.4.2 Medium Severity Issue Density. Figure 6 presents the av-
erage issue density categorized by years of experience for Medium
severity issues. Developers with less than three years of experience
exhibited an average issue density of 12.5 issues per NKLOC. This
figure escalated to 20.9 issues per NKLOC for those possessing
three to five years of experience, only to decline to 11.9 issues per
NKLOC for developers with over five years of experience. This
non-linear trend parallels the pattern observed with High severity
issues, where issue density initially increases before subsequently
decreasing with additional experience.

A detailed analysis of individual programming languages again
reveals distinct trends. In Python, issue density rises through the
three to five years experience category and then declines, reflecting
the overall observed trend. PHP, conversely, demonstrates relatively
stable issue density across all experience levels, indicating that
experience has a minimal impact on Medium severity issues within
this language. In contrast, JavaScript displays a consistent decrease
in issue density as developer experience increases, supporting the
hypothesis that higher experience may enhance code quality within
this context.

However, the results of the Kruskal-Wallis test indicate the ab-
sence of statistically significant differences in issue density across
the various experience levels. The p-values obtained were 0.69 for
JavaScript, 0.61 for PHP, 0.34 for Python, and 0.94 for the aggregate
of all languages. These elevated p-values and marginal absolute
differences between the issue densities suggest that the observed
differences in Medium severity issue density are likely attributable
to other factors rather than a systematic influence of developer
experience.

4.4.3 Low Severity Issue Density. Figure 7 shows that Low
severity issue density begins at 14.1 issues per NKLOC for develop-
ers with less than three years of experience, peaks at 23.4 for those
with three to five years, then drops to 10.8 for over five years. This
non-linear pattern mirrors trends found in higher severity issues.
A deeper investigation by language reveals distinct behaviors.
In Python, issue density is relatively low for beginners, rises for

Jefferson G. M. Lopes, Johnatan Oliveira, and Eduardo Figueiredo

60 [JavaScript
3 1 PHP
2 EE Python
;40
‘B +4
@ —
a
o 20
>
7] ——
N)

0

<3 3-5 >5
Years of Experience

Figure 7: Low severity issue density by years of experience

intermediate-level developers, then declines for those with more
than five years. PHP remains high for those below five years of expe-
rience but drops significantly thereafter, suggesting seasoned PHP
developers gain deeper insights to reduce minor issues. JavaScript
shows minimal fluctuations across all experience levels, with only
a slight increase in the three-to-five-year bracket.

Kruskal-Wallis tests indicate no statistically significant differ-
ences in Low severity issues across experience levels (p-values of
0.88 for JavaScript, 0.62 for PHP, 0.20 for Python, and 0.67 overall).
Because these issues often concern style or minor inefficiencies
rather than functionality, their impact on overall quality may be
limited. However, trends suggest that less experienced developers
adhere closely to standards, intermediates may explore advanced
techniques (potentially incurring more minor issues), and veteran
developers produce cleaner code, potentially after internalizing best
practices. Differences in language features also likely shape how
minor issues arise and are addressed.

RQ3 summary: The severity of code quality problems varies
with developer experience. High and Medium severity issues
show non-linear trends, peaking at moderate experience levels
and decreasing with more extensive experience. Low severity
issues follow a similar trajectory. The statistical correlation test
points no significant difference (p > 0.05) between the analyzed
series.

4.5 Discussion

Our findings reveal a complex, non-linear relationship between de-
veloper experience and code quality across different programming
languages, issue types, and severity levels. In our observations,
code quality was consistently improved by developers with the
highest level of experience. This pattern was observed across High,
Medium, and Low severity issues and Maintainability issues, indi-
cating that the relationship between experience and code quality
is more intricate than a simple linear correlation. Contrary to the
common belief that more experience uniformly and directly leads
to higher code quality, the frequency of code quality issues, or issue
density, often increases for developers with three to five years of
experience before declining for those with more than five years.

Aged to Perfection? Analyzing the Impact of Years of Experience on Code Quality

One possible explanation for this non-linear trend is grounded
in models of skill acquisition, such as the Dreyfus Model of Skill
Acquisition [18]. According to this model, individuals progress
through stages from novice to expert, and during the intermediate
‘competent’ stage, they have enough experience to tackle more
complex tasks but may lack the intuitive grasp that experts possess.
In our context, this stage may lead to increased introduction of code
quality issues as developers experiment with advanced features and
take on challenging problems without fully developed expertise.
Additionally, the Dunning-Kruger effect highlights that individuals
with low to moderate skill levels may overestimate their abilities
[39], potentially leading to overconfidence and a higher likelihood
of making mistakes or overlooking best practices.

Contextual factors, such as project complexity, task assignments,
and organizational practices likely contribute to these variations.
The choice of programming language being analyzed is also a cru-
cial factor that can significantly influence code quality. Different
programming languages have inherent characteristics, paradigms,
and syntax that can lead to variations in how code is structured
and maintained. While the impact of the programming language
on code quality is generally recognized to be marginal, it is es-
sential to acknowledge that these differences can affect aspects,
such as reliability and maintainability. For instance, languages that
enforce stricter typing or offer robust error-handling mechanisms
may contribute to fewer bugs and improved overall code reliabil-
ity. On the other hand, languages that promote rapid prototyping
may facilitate faster development cycles but can potentially lead
to lower code quality in terms of long-term maintainability and
scalability [35]. Experienced developers may produce cleaner code
due to their internalized best practices and deeper understanding
of language nuances. Less experienced developers might adhere
strictly to coding guidelines, resulting in fewer Low severity issues
but potentially not addressing complex problems effectively. In-
termediate developers may face new challenges without the full
expertise required, which can temporarily impact code quality until
they gain further experience.

Research opportunities exist to systematically investigate the dis-
tinct challenges faced by mid-level developers compared to those at
other levels of seniority. Such inquiry can contribute to a deeper un-
derstanding of the unique experiences and obstacles in the software
development profession, thereby informing strategies for effective
professional development. One potential solution to the noted phe-
nomenon is to provide ongoing training on more complex tasks
for mid-level developers or to engage them with case studies that
prepare them to tackle more sophisticated challenges. The lack of
statistically significant differences in issue densities across expe-
rience levels, as indicated by the Kruskal-Wallis tests (p-values >
0.05), suggests that experience alone may not be a strong predic-
tor of code quality. It also implies that other factors, such as team
dynamics, code review processes, or individual learning curves,
might impact code quality more than experience measured in years.
Our findings align partially with existing literature showing the
multifaceted nature of software development expertise. Practically,
these findings call for further research on other factors that may
play a more substantial role in influencing developer quality.

SBES 25, September 22-26, 2025, Recife, PE

5 THREATS TO VALIDITY

In this section, we discuss the potential threats to the validity of
our study, categorized according to Wohlin et al. [48].

Internal Validity - this validity concerns the use of self-reported
experience levels from the Workana platform. Self-reported data
may introduce biases if developers misrepresent their experience.
To mitigate this, we carefully categorized experience levels and
filtered out profiles lacking relevant information. However, the
reliance on self-reported data could still impact findings, as ac-
tual proficiency may not be exactly aligned with years of reported
experience. Furthermore, a discrepancy may exist between the ex-
perience developers assert on Workana and the recent activity in
their GitHub repositories. While some repositories may not reflect
the latest coding abilities of a developer, our analysis shows that for
75% of the developers, the oldest repository in their portfolio was
updated at most two years before their last Workana login. This
indicates that a large portion of the developer’s GitHub portfolio
is quite current, alleviating worries about the recency of outdated
code compared to their Workana profile. However, for a subset of
developers, repositories may not accurately reflect their current
proficiency, introducing a potential source of bias in the correlation
analysis.

External Validity - this study is potentially limited by the
selection of only three programming languages: JavaScript, PHP,
and Python. While these languages are widely used and represent
diverse paradigms, the results might not generalize to other pro-
gramming languages with distinct ecosystems and development
practices. Furthermore, as we only analyzed developers active on
GitHub and Workana, our findings may not apply to developers in
other contexts, such as enterprise environments or other freelanc-
ing platforms.

Construct Validity - this validity concerns the alignment be-
tween our measurements and the theoretical constructs we intend
to examine. In this study, we operationalized code quality using
SonarQube, a static analysis tool that detects maintainability and
reliability issues in source code. We selected SonarQube due to its
widespread use in industry and academia for analyzing software
quality [3, 35], and its classification of code issues aligns with key
attributes of the ISO/IEC 25010 [2] software quality framework.
Additionally, we restricted our dataset to single-author repositories,
ensuring that the detected issues reflect the practices of individual
developers rather than team dynamics. However, we acknowledge
that our study focuses primarily on maintainability and reliabil-
ity, and does not assess other dimensions of code quality, such as
performance and security. Despite this, maintainability and relia-
bility are critical aspects of software quality, making SonarQube an
appropriate tool for our analysis.

Conclusion Validity - this validity is related to the soundness
of our statistical analyses. We employed non-parametric tests due
to the non-normal distribution of our data; however, these tests may
have reduced sensitivity in detecting subtle relationships between
experience and code quality. Further, while outliers were identified
and removed using the Interquartile Range method, these values
might have contained useful information regarding the variabil-
ity in developer performance. Consequently, future studies with

SBES 25, September 22-26, 2025, Recife, PE

larger datasets and more nuanced statistical techniques could help
strengthen the conclusions drawn from this research.

6 RELATED WORK

This section introduces the related work relevant to our study, cover-
ing key findings on the relationship between developer experience,
human factors, technical debt, and code quality metrics.

The impact of developer experience on code quality has been
widely debated in the field of software engineering [7, 33, 34, 36].
Studies show that experience is not always a valid indicator of qual-
ity. For example, Dieste et al. [12] explore how industry experience
does not necessarily lead to improved code quality, finding that
factors like academic background and familiarity with productivity
tools can have more influence. This result suggests that although
experience is often valued, it should be considered alongside other
variables, such as specific tool expertise.

Salamea and Farre [36] examined human factors in software qual-
ity, focusing on aspects like the level of involvement and project
experience of developers. They found a positive correlation be-
tween experience and the amount of technical debt (TD) introduced,
though communication skills appeared to have minimal impact on
TD. Their results indicate that developers who are more familiar
with a project may tend to introduce TD, possibly due to the com-
plexity of their contributions. This study adds to the discussion on
experience by showing that developer characteristics can impact
both code quality and maintenance practices.

Research on the effects of code quality in production settings,
like the study by Tornhill and Borg [43], demonstrates that low-
quality code significantly increases defects and the time required
to resolve them, which in turn affects developer productivity. Their
findings indicate that TD leads to higher unpredictability, organi-
zational stress, and additional costs, highlighting the importance
of maintaining code quality as a business goal. This is particularly
relevant in our study, as SonarQube was used as a tool to identify
and mitigate maintainability and reliability issues.

Alfayez et al. [3] conducted an exploratory study on the influence
of developers on TD by analyzing 19,088 commits across 38 Apache
Java systems. Their findings indicate that TD is unevenly distributed
among developers, with seniority and frequency of commits nega-
tively correlated to TD introduced, while longer intervals between
commits are positively correlated. This suggests that more active
and experienced developers tend to reduce TD accumulation, while
less frequent contributors are more likely to increase TD. Their use
of SonarQube for TD measurement aligns with our methodological
approach and highlights the importance of individual developer
characteristics in maintaining code quality.

While previous studies have explored topics like developer ex-
perience, technical debt, and design practices, our study differs by
conducting a large-scale analysis across 401 GitHub repositories
in multiple languages (JavaScript, PHP, and Python) to investigate
the complex relationship between developer experience and code
quality. By integrating SonarQube metrics with developer profiles
from Workana, we provide a detailed analysis of how experience
influences maintainability and reliability issues in varied contexts.
Unlike other studies that often suggest linear trends, our findings
indicate a non-linear relationship between experience and code

Jefferson G. M. Lopes, Johnatan Oliveira, and Eduardo Figueiredo

quality, suggesting that as developers gain experience, the complex-
ity and reliability challenges in their projects may increase, rather
than showing a simple improvement in code quality.

7 CONCLUSION

It is a common belief is that experience of developers has a pos-
itive linear correlation with code quality. Although several stud-
ies [7, 33, 34, 36] have explored their relationships, literature re-
ports conflicting results. To deeper investigate this open question
with high implications for software engineering and related areas,
such as program comprehension, this paper performed an empirical
study with publicly available data mined from GitHub and Workana.
Based on profiles of 98 developers and 401 open-source software
repositories, we analyzed different perspectives of the experience-
quality relationship, such as programming language, types of code
issues, and severity of issues.

Our observations consistently indicated that experienced de-
velopers exhibit a lower density of issues compared to their less
experienced counterparts, particularly in terms of maintainability
and issues classified with High, Medium, and Low severity across
all issue types. Furthermore, our analysis revealed that develop-
ers with three to five years of experience exhibited higher issue
densities compared to both less experienced and more experienced
developers. This non-linear relationship was relatively consistent
across different programming languages and issue types. These
findings suggest that factors, such as the complexity of tasks at
different career stages, perception of competency and even the spe-
cific characteristics of programming languages may influence code
quality more significantly than experience alone.

For future work, we plan to expand our study to cover other
programming languages and more developers. We may achieve this
goal by replicating our study with different freelance platforms and
professional social networks, such as LinkedIn [1]. Another possible
venue for further work is using varying proxies for software quality,
such as the number of reported bugs or other evaluation tools.
Human subjects could also be used to evaluate other dimensions of
code quality, such as portability and usability.

ARTIFACT AVAILABILITY

This research examines data from public repositories on GitHub
and Workana, ensuring the adherence to ethical standards in soft-
ware repository mining as outlined in the software engineering
literature [17]. The data set utilized in this study and all the scripts
are accessible through a public repository [4]. We have taken steps
to anonymize developer identifiers from both Workana and GitHub
profiles, where feasible, to address privacy concerns. We have also
refrained from disclosing confidential information, such as names,
LinkedIn profiles, Facebook pages, and other personal information
that could identify or affect the study subjects. Although our objec-
tive is to investigate the link between experience and code quality,
we recognize that software quality may be shaped by numerous
factors beyond one’s self-reported experience.

Acknowledgements. This research was partially supported by
Brazilian funding agencies: CNPq (Grant 312920/2021-0), CAPES,
and FAPEMIG (Grant APQ-01488-24).

Aged to Perfection? Analyzing the Impact of Years of Experience on Code Quality

REFERENCES

[1] [n.d.]. LinkedIn. https://linkedin.com. Accessed: 2024-11-01.
[2

[3

Proceedings of the 2018 international conference on technical debt. 1-10.
[4] Authors. 2025.

28306316.v1

[5] Michele A Branddo and Mirella M Moro. 2017. Social professional networks: A

survey and taxonomy. Computer Communications 100 (2017), 20-31.

[6] Raymond PL Buse and Westley R Weimer. 2009. Learning a metric for code

readability. IEEE Transactions on software engineering 36, 4 (2009), 546-558.

[7] Denivan Campos, Luana Martins, and Ivan Machado. 2022. An empirical study
on the influence of developers’ experience on software test code quality. In

Proceedings of the XXI Brazilian Symposium on Software Quality. 1-10.

[8] Luiz Fernando Capretz and F. Ahmed. 2018. A Call to Promote Soft Skills in
Software Engineering. ArXiv abs/1901.01819 (2018). https://doi.org/10.17140/

PCSOJ-4-€011

[9] Jacob Cohen. 1988. Statistical Power Analysis for the Behavioral Sciences (2nd ed.).

Routledge, New York, NY, USA.

[10] Francisco Gomes de Oliveira Neto, Richard Torkar, Robert Feldt, Lucas Gren,
Carlo A Furia, and Ziwei Huang. 2019. Evolution of statistical analysis in empirical
software engineering research: Current state and steps forward. Journal of

Systems and Software 156 (2019), 246-267.

[11] Massimiliano Di Penta, Luigi Cerulo, and Lerina Aversano. 2009. The life and
death of statically detected vulnerabilities: An empirical study. Information and

Software Technology 51, 10 (2009), 1469-1484.

[12] O. Dieste et al. 2017. Empirical evaluation of the effects of experience on code
quality and programmer productivity: an exploratory study. Empirical Software

Engineering 22, 5, 2457-2542.

[13] Nikolina Dragicevic, Matantsev Maxim, and Artem Kruglov. 2023. A Study of
Effective Strategies for Personal Development and Success for Software Engineers.
In 2023 IEEE 14th International Conference on Software Engineering and Service

Science (ICSESS). IEEE, 101-104.

[14] K Anders Ericsson, Robert R Hoffman, Aaron Kozbelt, and A Mark Williams.
2018. The Cambridge handbook of expertise and expert performance. Cambridge

University Press.

[15] Jefferson G. Lopes, Johnatan Alves, and Eduardo Figueiredo. 2022. EXTRACT-
PRO: A Data Mining Tool for Developer Profile Generation based on Source
Code Analysis. In Proceedings of the XXXVI Brazilian Symposium on Software

Engineering. 112-117.

=
&

Networked Services (DANS).

[17] Nicolas E Gold and Jens Krinke. 2022. Ethics in the mining of software repositories.

Empirical Software Engineering 27, 1 (2022), 17.
[18

23-443.

[19] .. Khyber, Sikandar Ali, Fazli Wahid, S. Baseer, A. Alkhayyat, and Akram Al-
Radaei. 2024. Smell-Aware Bug Classification. IEEE Access 12 (2024), 14061-14082.

https://doi.org/10.1109/ACCESS.2023.3335175
[20

Prediction. In IEEE Xplore.

[21] Barbara Kitchenham and Stuart Charters. 2007. Guidelines for Performing Sys-
tematic Literature Reviews in Software Engineering. Technical Report EBSE 2007-
001. EBSE Technical Report. https://www.cs.auckland.ac.nz/~norsaremah/2007-

Kitchenham-GuideSLR.pdf

[22] William H. Kruskal and W. Allen Wallis. 1952. Use of Ranks in One-Criterion

Variance Analysis. J. Amer. Statist. Assoc. 47, 260 (Dec. 1952), 583-621.

[23] Paul Luo Li, Amy J Ko, and Jiamin Zhu. 2015. What makes a great software
engineer?. In 2015 IEEE/ACM 37th IEEE International Conference on Software

Engineering, Vol. 1. IEEE, 700-710.

[24] Jefferson GM Lopes, Johnatan Oliveira, and Eduardo Figueiredo. 2024. Evaluating
the Impact of Developer Experience on Code Quality: A Systematic Literature
Review. In Congresso Ibero-Americano em Engenharia de Software (CIbSE). SBC,

166-180.
[25

IEEE, 334-344.

2023. ISO/IEC 25010:2023: Systems and Software Engineering — Systems and
Software Quality Requirements and Evaluation (SQuaRE) — System and Software
Quality Models. https://www.iso.org/standard/78176.html ISO/IEC Standard.

Reem Alfayez, Pooyan Behnamghader, Kamonphop Srisopha, and Barry Boehm.
2018. An exploratory study on the influence of developers in technical debt. In

replication-package-Analyzing-the-Impact-of-Years-of-
Experience-on-Code-Quality-main. (1 2025). https://doi.org/10.6084/m9.figshare.

E. Giger, M. Pinzger, and H. C. Gall. 2011. Comparing fine-grained source code
changes and code churn for bug prediction. In Proceedings of Data Archiving and

Nora Honken. 2013. Dreyfus five-stage model of adult skills acquisition applied
to engineering lifelong learning. In 2013 ASEE Annual Conference & Exposition.

S. Ozcan Kini and A. Tosun. 2018. Periodic Developer Metrics in Software Defect

Ivano Malavolta, Roberto Verdecchia, Bojan Filipovic, Magiel Bruntink, and
Patricia Lago. 2018. How maintainability issues of android apps evolve. In 2018
IEEE international conference on software maintenance and evolution (ICSME).

SBES 25, September 22-26, 2025, Recife, PE

[26] James Miller. 2004. Statistical significance testing—-a panacea for software

[27]

[28

[29

[30

(31

[32

[33

[35

[36

[37

(38]

[39

=
=

[41

[42

[43]

[44

=
i)

[46

[47

[48

(49]

technology experiments? Journal of Systems and Software 73, 2 (2004), 183-192.
O. Dieste et al. 2018. Empirical Evaluation of the Effects of Experience on Code

Quality and Programmer Productivity: An Exploratory Study. In Proceedings of
the 2018 International Conference on Software and System Process. 111-112.
Susanna Paloniemi. 2006. Experience, competence and workplace learning.
Journal of Workplace Learning 18 (10 2006), 439-450. https://doi.org/10.1108/
13665620610693006

Pandas. 2019. Python Data Analysis Library — pandas: Python Data Analysis
Library. https://pandas.pydata.org. Accessed: Nov. 1, 2024.

Shravan Pargaonkar. 2023. Cultivating Software Excellence: The Intersection of
Code Quality and Dynamic Analysis in Contemporary Software Development
within the Field of Software Quality Engineering. International Journal of Science
and Research (IJSR) (2023). https://doi.org/10.21275/sr23829092346

V. Piantadosi, S. Scalabrino, A. Serebrenik, N. Novielli, and R. Oliveto. 2023. Do
attention and memory explain the performance of software developers? Empirical
Software Engineering 28, 5 (Aug. 2023).

Alifia Puspaningrum, Muhammad Anis Al Hilmi, . Darsih, Muhamad Mustamiin,
and Maulana Ilham Ginanjar. 2022. Vulnerable Source Code Detection Using
Sonarcloud Code Analysis. In Proceedings of the 5th International Conference on
Applied Science and Technology on Engineering Science. SCITEPRESS - Science and
Technology Publications, 683-687. https://doi.org/10.5220/0011862600003575
Yilin Qiu, Weiqiang Zhang, Weiqin Zou, Jia Liu, and Qin Liu. 2015. An empirical
study of developer quality. In 2015 IEEE International Conference on Software
Quality, Reliability and Security-Companion. IEEE, 202-209.

Foyzur Rahman and Premkumar Devanbu. 2011. Ownership, experience and
defects: a fine-grained study of authorship. In Proceedings of the 33rd International
Conference on Software Engineering. 491-500.

Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. 2014.
A large scale study of programming languages and code quality in github. In
Proceedings of the 22nd ACM SIGSOFT international symposium on foundations of
software engineering. 155-165.

Maria José Salamea and Carles Farré. 2019. Influence of developer factors on
code quality: A data study. In 2019 IEEE 19th International Conference on Software
Quality, Reliability and Security Companion (QRS-C). IEEE, 120-125.

Sigrid Schefer-Wenzl and I. Miladinovic. 2019. Developing Complex Problem-
Solving Skills: An Engineering Perspective. Int. J. Adv. Corp. Learn. 12 (2019),
82-88. https://doi.org/10.3991/ijac.v12i3.11067

D. Shyamal, P. Asanka, and D. Wickramaarachchi. 2023. A Comprehensive Ap-
proach to Evaluating Software Code Quality Through a Flexible Quality Model.
2023 International Research Conference on Smart Computing and Systems Engi-
neering (SCSE) 6 (2023), 1-8. https://doi.org/10.1109/SCSE59836.2023.10215004
Daniel J Simons. 2013. Unskilled and optimistic: Overconfident predictions
despite calibrated knowledge of relative skill. Psychonomic bulletin & review 20
(2013), 601-607.

SonarSource. 2024. Clean-Code-based analysis | SonarQube Docs. https://docs.
sonarsource.com/sonarqube/10.7/core-concepts/clean-code/code-analysis/. Ac-
cessed: Nov. 1, 2024.

SonarSource. 2024. Metrics | SonarQube Docs. https://docs.sonarsource.com/
sonarqube-server/10.7/user- guide/code-metrics/metrics-definition/. Accessed:
Nov. 1, 2024.

SonarSource. 2024. Software qualities | SonarQube Docs. https://docs.sonarsource.
com/sonarqube/10.7/core-concepts/clean-code/software-qualities/. Accessed:
Now. 20, 2024.

Adam Tornhill and Markus Borg. 2022. Code red: the business impact of code
quality-a quantitative study of 39 proprietary production codebases. In Proceed-
ings of the International Conference on Technical Debt. 11-20.

W.-C. Tsai, N.-W. Chi, T.-C. Huang, and A.-J. Hsu. 2010. The Effects of Applicant
Résumé Contents on Recruiters’ Hiring Recommendations: The Mediating Roles
of Recruiter Fit Perceptions. Applied Psychology 60, 2 (Oct. 2010), 231-254.

V. Piantadosi et al. 2023. Do Attention and Memory Explain the Performance of
Software Developers? Empirical Software Engineering (2023).

Y. Wang, B. Zheng, and H. Huang. 2008. Complying with Coding Standards or
Retaining Programming Style: A Quality Outlook at Source Code Level. Journal
of Software Engineering and Applications 1, 1 (2008), 88-91.

Claes Wohlin, Per Runeson, Martin Host, Magnus C. Ohlsson, Bjérn Regnell, and
Anders Wesslén. 2012. Experimentation in Software Engineering. Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-642-29044-2

Claes Wohlin, Per Runeson, Martin Hst, Magnus C. Ohlsson, Bjrn Regnell, and An-
ders Wessln. 2012. Experimentation in Software Engineering. Springer Publishing
Company, Incorporated.

WORKANA. 2024. Hire Freelancers and IT Developers | Workana. https://www.
workana.com. Accessed: Nov. 1, 2024.

Z. Karimi et al. 2016. Links Between the Personalities, Styles and Performance in
Computer Programming. Journal of Systems and Software 111 (2016), 228-241.

https://linkedin.com
https://www.iso.org/standard/78176.html
https://doi.org/10.6084/m9.figshare.28306316.v1
https://doi.org/10.6084/m9.figshare.28306316.v1
https://doi.org/10.17140/PCSOJ-4-e011
https://doi.org/10.17140/PCSOJ-4-e011
https://doi.org/10.1109/ACCESS.2023.3335175
https://www.cs.auckland.ac.nz/~norsaremah/2007-Kitchenham-GuideSLR.pdf
https://www.cs.auckland.ac.nz/~norsaremah/2007-Kitchenham-GuideSLR.pdf
https://doi.org/10.1108/13665620610693006
https://doi.org/10.1108/13665620610693006
https://pandas.pydata.org
https://doi.org/10.21275/sr23829092346
https://doi.org/10.5220/0011862600003575
https://doi.org/10.3991/ijac.v12i3.11067
https://doi.org/10.1109/SCSE59836.2023.10215004
https://docs.sonarsource.com/sonarqube/10.7/core-concepts/clean-code/code-analysis/
https://docs.sonarsource.com/sonarqube/10.7/core-concepts/clean-code/code-analysis/
https://docs.sonarsource.com/sonarqube-server/10.7/user-guide/code-metrics/metrics-definition/
https://docs.sonarsource.com/sonarqube-server/10.7/user-guide/code-metrics/metrics-definition/
https://docs.sonarsource.com/sonarqube/10.7/core-concepts/clean-code/software-qualities/
https://docs.sonarsource.com/sonarqube/10.7/core-concepts/clean-code/software-qualities/
https://doi.org/10.1007/978-3-642-29044-2
https://www.workana.com
https://www.workana.com

	Abstract
	1 Introduction
	2 Background
	2.1 Quantifying Experience
	2.2 Code Quality
	2.3 Social Professional Networks and Portfolios

	3 Research Method
	3.1 Study Goal and Research Questions
	3.2 Workana Profile Collection
	3.3 GitHub Repository Collection
	3.4 SonarQube Scan and Quality Evaluation
	3.5 Matching of Self-Declared Skills and Metrics
	3.6 Data Analysis

	4 Results and Discussion
	4.1 Overall Analysis
	4.2 Analysis of Programming Languages
	4.3 Analysis of Issue Types
	4.4 Analysis of Issue Severity
	4.5 Discussion

	5 Threats to Validity
	6 Related Work
	7 Conclusion
	References

