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Abstract

The growing adoption of Internet of Things (IoT) systems in do-
mains such as smart cities, industry 4.0, and embedded devices
poses new challenges to software engineering. This study aims to
characterize Free/Libre and Open Source Software (FLOSS) projects
related to IoT, focusing on Real-Time Operating Systems (RTOS)
and Development Tools (DT). We analyzed 25 GitHub repositories
using quantitative metrics grouped into popularity, repository ac-
tivity, and community attributes. Through K-Means clustering and
correlation analysis, we identified four main project clusters and
their distinctive traits. Results indicate that most FLOSS IoT sys-
tems projects rely on C/C++, suitable for resource-constrained en-
vironments. Strong positive correlations between Forks-Issues and
Watchers—Stars suggest that more popular projects foster greater
community engagement. RTOS projects show deeper collaboration,
while DT projects exhibit broader popularity. These findings pro-
vide insights into the collaborative dynamics and sustainability of
FLOSS IoT ecosystems.
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1 Introduction

The Internet of Things (IoT) is increasingly integrated into daily life
through applications such as smart cities, smart homes, industry
4.0, and wearable devices [20]. IoT systems consist of connected
objects that collect and process data to generate value for users [2],
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operating through the interaction of sensor networks and embedded
system architectures [19].

The design and quality of IoT systems depend on both hardware
and software development processes. Software engineering aims to
improve these processes to deliver reliable, high-quality systems
at sustainable costs [21]. Given that IoT-related projects impose
specific constraints and differ from traditional software domains,
it is essential to understand how these projects are structured and
evolved as a foundation for future investigations [15].

0T development poses distinct challenges compared to web and
mobile applications, which are often implemented in high-level
languages such as JavaScript, Python, Java, and Ruby [8, 13]. These
projects emphasize usability and graphical interfaces, supported by
environments with abundant computational resources. Conversely,
IoT projects predominantly use C, C++, and Assembly—languages
suited for resource-constrained devices such as microcontrollers.
Consequently, IoT software development prioritizes robustness,
reliability, and resilience, ensuring consistent operation under strict
hardware and environmental limitations [18, 25].

To characterize the development and community dynamics of
Free/Libre and Open Source Software (FLOSS) projects related to
the IoT, we mined software metrics from 25 GitHub repositories.
Repositories were retrieved using the GitHub API and manually
validated to ensure relevance to IoT embedded software or sup-
porting tools. Metrics were organized into 3 categories: popularity,
repository activity, and community and analyzed through K-Means
clustering and Spearman’s correlation to identify common patterns
and relationships [24]. Data collection followed the Mining Soft-
ware Repositories (MSR) study.

The popularity of FLOSS projects on GitHub is influenced by or-
ganizational and technical factors, with organizational ownership,
frequent releases, regular updates, and tagging practices contribut-
ing to higher visibility and engagement [5]. Additionally, the adop-
tion of GitHub Actions has led to more streamlined contribution
processes, as accepted pull requests tend to include fewer commits
[16]. Overall, the pull-request-based development model typical of
social coding platforms enhances community engagement by reduc-
ing entry barriers and increasing transparency, thereby motivating
sustained participation and contributions [9].

The study provides an empirical characterization of FLOSS IoT-
related projects on GitHub, focusing on RTOS and DT. An analysis
of repositories reveals a predominance of C/C++ and identifies dis-
tinct project patterns through clustering. Strong correlations are
observed between popularity and engagement metrics, indicating
that more popular projects foster higher levels of community par-
ticipation. The results highlight differences between RTOS projects,
which exhibit deeper collaboration, and DT projects, which achieve
broader popularity, offering insights for future research on sustain-
ability and collaborative dynamics in IoT FLOSS ecosystems.
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The Section 2 contains the research setup we followed that led to
the results and discussion we present in Section 3. Section 4 shows
the threats to validity and the mitigating actions we took. Section 5
summarizes the related work. Final considerations and future work
are discussed in Section 6.

2 Research Setup

We mined software metrics from 25 FLOSS IoT systems projects.
The study aimed to characterize these projects in terms of their de-
velopment processes and community dynamics within distributed
software ecosystems. Our main research question was: What are
the characteristics of FLOSS projects for IoT-related systems?

We selected repositories using the GitHub API query!. Then,
we manually inspected each repository to confirm its relevance,
excluded non-software items (e.g., books or tutorials), and kept only
projects related to IoT embedded software or tools that support their
development. We considered only repositories written in English.

Repositories with more than 1,000 stars were selected because
stars are widely recognized as an indicator of popularity and com-
munity interest on GitHub [5]. Most developers consider this met-
ric before using or contributing to a project. However, this selec-
tion may introduce biases, favoring projects with active marketing,
larger contributor bases, or popular languages, such as JavaScript.

The complete dataset is publicly available in our replication
package?. Our study follows MSR best practices and aligns with the
ACM Empirical Standards, incorporating methodological guidance
from Barros (2021) [3].

We organized the metrics into 3 categories: Popularity (stars,
forks, issues, watchers), Repository Activity (releases, commits,
branches, pull requests), and Community (contributors, Truck-
Factor (TF), and one-time contributors). To identify characteristic
patterns across projects, we applied an unsupervised clustering
approach with the K-Means algorithm and determined the optimal
number of clusters using the Elbow Method. We also calculated
Spearman’s rank correlation coefficient to examine the relation-
ships among metrics [24].

3 Results and Discussion

Tables 1 and 2 summarize the selected RTOS and DT projects, listing
names, stars, licenses, and the top 5 programming languages. Both
tables are sorted by stars.

Among the 25 projects analyzed, 17 are primarily developed in
C and two in C++, confirming their focus on resource-constrained
environments. The remaining 6 use JavaScript, Go, Ruby, or Java.
Assembly, Python, and Shell frequently appear as secondary lan-
guages. Compared to GitHub’s most popular languages (JavaScript,
Python, Java, TypeScript, and C#), our dataset shows a distinct
profile dominated by C/C++ programming languages, consistent
with IoT system demands.

Among the selected projects, both restrictive (“copyleft”) and
permissive licenses were identified. Copyleft licenses require that
redistributed or modified versions preserve the same freedom to
modify and share, while permissive ones allow derivative works

!https://api.github.com/search/repositories?q=topic:internetofthings,iot+stars:>1000
*https://zenodo.org/records/17418800
Shttps://octoverse.github.com/2022/top-programming-languages
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under different terms, even proprietary. According to a 2022 White-
Source study*, permissive licenses remain dominant across open-
source projects, which aligns with our sample’s preference for the
Apache 2.0 license.

We grouped the repository metrics into popularity, repository
activity, and community categories. By applying K-Means and the
Elbow Method [7], we identified 4 optimal clusters. The dataset
contains 5 software types: RTOS (9), frameworks (9), libraries (3),
programming languages (2), and IDEs (2). The popularity metrics
exhibited the strongest relationships (Figure 1), and detailed charts
for all categories appear in our replication package.
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Figure 1: Average metrics by cluster.

Table 3 lists project clusters by type and category. The K-Means
algorithm grouped repositories with similar popularity, repository
activity, and community profiles. Cluster patterns reveal how ar-
chitectural evolution, governance, and community participation
differentiate projects.

The zephyrproject-rtos/zephyr project stood apart in all clusters,
reflecting its exceptional popularity and adoption within the IoT
ecosystem. Maintained by The Linux Foundation and supported by
dozens of global organizations, Zephyr combines extensive hard-
ware compatibility with a highly modular codebase spanning mul-
tiple architectures, boards, and subsystems. This breadth, along
with strong institutional governance and an active community, dis-
tributes critical knowledge across many specialized maintainers,
which explains its unusually high TF ()31).

The repositories contiki-os/contiki and contiki-ng/contiki-ng di-
verged only in the community category. The latter, a fork of the
former, underwent significant architectural updates to integrate
newer technologies. While Contiki received its last update in 2021,
Contiki-NG remained active until mid-2024, illustrating how mod-
ernization and design evolution shape community engagement and
participation within open IoT software ecosystems.

The FreeRTOS/FreeRTOS and aws/amazon-freertos projects shared
similar clusters in most categories. Although both derive from the
same RTOS base, Amazon’s fork pursued integration with propri-
etary cloud services. The company later discontinued public devel-
opment of Amazon FreeRTOS, maintaining it in read-only mode,
while the community-driven FreeRTOS continued under the MIT
license. This contrast highlights the impact of corporate control on
openness and repository activity within FLOSS IoT platforms.

*https://www.mend.io/resources/white-papers/the-complete-guide-for-open-source-
licenses/
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Table 1: RTOS Projects Selected for Analysis

Project name Stars License Programming languages
RT-Thread/rt-thread 7895 Apache-2.0 C; Assembly; Python; C++; Shell
zephyrproject-rtos/zephyr 7165 Apache-2.0 C; Python; Assembly; Perl; Shell
RIOT-OS/RIOT 4351 GNULGPL-2.1  C; C++; Python; Shell; Assembly
ARMmbed/mbed-OS 4274 Apache-2.0 C; Assembly; C++; Python
contiki-os/contiki 3520 3-clause BSD C; Java; C++; Python; Assembly
FreeRTOS/FreeRTOS 3253 MIT C; Assembly; Python
aws/amazon-freertos 2526 MIT C; Python; Shell; Go
apache/nuttx 1226 Apache-2.0 C; Assembly; Shell; Python; C++
contiki-ng/contiki-ng 1018 3-clause BSD C; Python; Shell

Table 2: DT Projects Selected for Analysis

Project name Stars License Programming languages
Tencent/ncnn 16328 3-clause BSD C++; C; Python; Shell
micropython/micropython 15839 MIT C; Python; C++; Shell
esp8266/Arduino 14692 GNU LGPL-2.1 C++; C; Python; Shell; Assembly
arduino/Arduino 13360 GNU GPL-2.0 Java; Python
rwaldron/johnny-five 12908 MIT JavaScript
espressif/arduino-esp32 10025 GNU LGPL-2.1 C; C++
espressif/esp-idf 9813 Apache-2.0 C; Python; C++; Assembly; Shell
hybridgroup/gobot 8084 Apache-2.0 Go; C
jerryscript-project/jerryscript 6470 Apache-2.0 C; JavaScript; Python; Shell; C++
hybridgroup/cylon 3956 Apache-2.0 JavaScript
adafruit/circuitpython 3417 MIT C; Python; Shell; C++
espressif/ESP8266_RTOS_SDK 2935 Apache-2.0 C; Python; C++; Shell
jerryscript-project/iotjs 2527 Apache-2.0 C; JavaScript; Python; Shell
cesanta/mongoose-os 2356 Apache-2.0 C; Assembly; Python; C++; JavaScript
hybridgroup/artoo 1532 Apache-2.0 Ruby
arduino/arduino-ide 1287  GNU AGPL-3.0 TypeScript; JavaScript

Table 3: K-Means check

Project Kind General Popularity Delivery Community
zephyrproject-rtos/zephyr RTOS 2 2 1 2
ARMmbed/mbed-OS RTOS 3 1 2 1
RIOT-OS/RIOT RTOS 3 1 2 3
contiki-os/contiki RTOS 0 1 3 0
contiki-ng/contiki-ng RTOS 0 1 3 3
RT-Thread/rt-thread RTOS 3 1 0 1
aws/amazon-freertos RTOS 0 1 0 0
apache/nuttx RTOS 3 1 2 3
FreeRTOS/FreeRTOS RTOS 0 1 3 0
esp8266/Arduino Library (DT) 1 0 0 1
arduino/Arduino IDE (DT) 1 0 3 3
espressif/arduino-esp32 Library (DT) 1 0 3 1
arduino/arduino-ide IDE (DT) 0 1 3 0
espressif/ESP8266_RTOS_SDK Framework (DT) 0 1 3 0
espressif/esp-idf Framework (DT) 1 0 3 1
jerryscript-project/iotjs Framework (DT) 0 1 3 0
jerryscript-project/jerryscript ~ Library (DT) 0 1 0 0
micropython/micropython Language (DT) 1 3 0 1
hybridgroup/gobot Framework (DT) 0 1 3 0
hybridgroup/cylon Framework (DT) 0 1 3 0
hybridgroup/artoo Framework (DT) 0 1 3 0
Tencent/ncnn Framework (DT) 1 3 3 3
rwaldron/johnny-five Framework (DT) 1 3 3 0
cesanta/mongoose-0s Framework (DT) 0 1 3 0
adafruit/circuitpython Language (DT) 3 1 0 0
The projects apache/nuttx and RIOT-OS/RIOT emphasize the LGPL-2.1 license after community debate®, seeking to ensure long-

importance of governance and licensing in sustaining open-source term openness and protection against code closure, an essential
longevity. NuttX, once an incubated project, became an official aspect for the sustainability of free IoT operating systems.

Apache Foundation project in 20223, incorporating CI/CD practices
and stable release processes. Meanwhile, RIOT-OS adopted the

Shttps://cwiki.apache.org/confluence/collector/pages.action? key = NUTTX Chttps://github.com/RIOT-OS/RIOT/issues/2128
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The arduino/arduino-ide project is maintained by the Italian
company Arduino. This project is an integrated development envi-
ronment (IDE), a platform for prototyping. This repository contains
the Arduino IDE 2.x source code. There is also an Arduino/Arduino
repository with Arduino IDE 1.x source code. According to the
company, the latest version has been rewritten, and no code from
the pioneer repository has been reused. The pioneering project has
more contributors overall, but none made only a single contribution.
In contrast, the project under development includes a subgroup
of five contributors who each made just one contribution. On the
TF, the pioneer has a value of 2, and the current has a value of 1.
These values caused the algorithm to classify them into 3 different
clusters. May be because they do not share codes according to the
README.md’ file of the arduino/arduino-ide project. Seven other
projects in the sample also have TF 1.

The espressif/ESP8266_RTOS_SDK project is also owned by
the Chinese company Espressif. It is a development framework
for the ESP8266 SOC. The jerryscript-project/jerryscript library is
used to develop JavaScript IoT projects. It was used to develop the
jerryscript-project/iotjs framework.

There are 3 projects from the same owner called hybridgroup are
frameworks for IoT. What distinguishes them is their support for
different programming languages. Gobot is in Golang, Cylon is for
JavaScript and Artoo is for Ruby. The last project is also a framework
called cesanta/mongoose-os for IoT firmware development. These
last 4 projects are part of the same clusters.

Table 4 reports Spearman correlations [24] among metrics. Strong
positive correlations (p > 0.8) were found for Forks x Issues (0.825)
and Watchers x Stars (0.909). The Forks x Issues correlation sug-
gests that projects with more forks tend to have more issue reports,
reflecting both user engagement and community size. The Watchers
x Stars correlation indicates that users who star repositories often
follow them closely. Although correlations don’t imply causality,
they highlight interactive dynamics of active FLOSS ecosystems.

Table 4: Spearman’s correlation coefficient for each category

Combination T p-value
Forks vs. Issues 0.825 0.000
Watchers vs. Stars 0.909 0.000

Figures 2 and 3 present these relationships. RTOS projects are
marked with stars and DT with dots. Cluster centroids (yellow)
represent typical metric patterns. Silhouette scores of 0.57 and 0.59
indicate well-defined clusters, with some overlap near boundaries.

DT projects have the highest values for Stars, Forks, and Watch-
ers. We suspect that DT projects have many users, but these users
don’t necessarily contribute to the source code. In RTOS projects,
their users interact more with the community and the source code
repository. The number of Forks drastically influences the number
of Issues. Projects that originated from a Fork of another project
may have received more attention from a new group of contributors
due to changes in business models or evolution strategies. Issues
serve as an information exchange between parties, and the number

"https://github.com/arduino/arduino-ide/blob/main/README.md
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Figure 2: Scatter plot between Forks and Issues.
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Figure 3: Scatter plot between Watchers and Stars.

of Issues may increase as the number of Forks of that project also
increases [11].

A repository receives a Star from users when they want to fa-
vorite it. Usually, this occurs because the user is a contributor or
uses the software at a particular time. When a user wants to un-
derstand more about the development dynamics of that software,
they can become a Watcher of the repository. From then on, any
movement of Issues, PR, among others, is notified. With this, he
begins to have a detailed view of the project and better understands
the details. It is common for this user to contribute to the project
after becoming a Watcher [12]. So, a repository with many Stars
can imply many Watchers.

4 Threats to Validity

Threats to external validity relate to the generalizability of our
results beyond the study’s scope. Since we focused on FLOSS IoT-
related project repositories, our findings may not apply to other
types of systems due to differences in programming languages, col-
laborator profiles, and domain complexity. The selection of reposi-
tories with more than 1,000 stars aimed to ensure the analysis of
widely adopted and active projects, which is a common practice in
studies on social and technical metrics in FLOSS ecosystems. How-
ever, we acknowledge that the number of stars is not an absolute
indicator of technical quality or deployment success, as it may also
reflect factors such as project visibility, marketing, or community
affinity. To mitigate this bias, we rely on evidence from prior work
(e.g., [5]), which shows that GitHub stars correlate with project
popularity and influence, yet should be interpreted with caution.
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Threats to conclusion validity concern the reasonableness of
our analysis conclusions. These threats are less likely to affect the
quantitative results for RQ, as they derive primarily from direct
metrics and counts of repository data, where the analysis is mainly
descriptive. To mitigate these threats, we employed an iterative
process of analysis and discussion among multiple authors, seeking
consensus on the definitions of categories emerging from the data.

5 Related Work

IoT-related projects development is different from application devel-
opment for other domains. Rigid real-time requirements, the exper-
imental work of testing software in emulators, the documentation
that often needs to be formally built for critical systems, integra-
tion testing due to co-design of software and hardware, testing and
production environments are often different from the development
environment, are challenges in this domain and cannot be fully
covered by traditional software development processes [22].
However, some studies have identified a transformation from tra-
ditional methods to an agile approach, where both types are found:
organizations with 2 kinds of processes operating simultaneously
and even having models to be used as a reference for a trans- forma-
tion [4, 17]. Some studies investigated the use of agile methods in
the embedded context, the most common evidence being the use of
practices and techniques from Scrum and Extreme Program- ming
[1, 23]. We noticed in these studies that practices more focused on
project management are the most used, but pair programming and
test-driven development have also been widely discussed.

6 Conclusion and Future Work

This study empirically characterizes FLOSS projects in the IoT do-
main by analyzing 25 GitHub repositories to examine their orga-
nization, evolution, and community dynamics, with a focus on
RTOS and development tools. Using data mining, clustering, and
correlation analysis, the study identifies distinct patterns of pop-
ularity, activity, and engagement, highlighting the prevalence of
C/C++ and strong positive relationships between key metrics (e.g.,
Forks x Issues and Watchers x Stars) as indicators of collaborative
ecosystems. The findings show that differences in software type
are associated with varying levels of collaboration intensity and
suggest that organizational models, governance, and licensing play
a significant role in sustaining community participation and project
longevity, offering insights for both practitioners and researchers
interested in scalable and sustainable IoT FLOSS ecosystems.
Future work includes expanding the dataset to incorporate IoT
platforms and repositories from alternative hosting services, such
as GitLab and Bitbucket. Another promising direction is integrating
qualitative analysis, through interviews or surveys, with the quan-
titative insights obtained here, allowing for a deeper understanding
of the motivations and challenges faced by FLOSS IoT communities.
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