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Abstract

Code smells are symptoms of bad design choices implemented on the source
code. Several code smell detection tools and strategies have been proposed
over the years, including the use of machine learning algorithms. However,
we lack empirical evidence on how expert feedback could improve machine
learning based detection of code smells. This paper aims to propose and
evaluate a conceptual strategy to improve machine-learning detection of code
smells by means of continuous feedback. To evaluate the strategy, we follow
an exploratory evaluation design to compare results of the smell detection
before and after feedback provided by a service - acting as a software expert.
We focus on four code smells - God Class, Long Method, Feature Envy, and
Refused Bequest - detected in 20 Java systems. As results, we observed that
continuous feedback improves the performance of code smell detection. For
the detection of the class-level code smells, God Class and Refused Bequest,
we achieved an average improvement in terms of F1 of 0.13 and 0.58, re-
spectively, after 50 iterations of feedback. For the method-level code smells,
Long Method and Feature Envy, the improvements of F'1 were 0.66 and 0.72,
respectively. Our promising results are a stepping stone towards the develop-
ment of new strategies and tools relying on continuous feedback for machine
learning detection of code smells.
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1. Introduction

Code smells are symptoms of bad design choices implemented on source
code [1]. They negatively affect software quality attributes [2], such as soft-
ware comprehension [3], code stability [4], and robustness [5, 6]. Further-
more, they are one of the key indicators of technical debts, specifically design
debts [7], resulting in extra costs in the software development life-cycle, such
as rework [8]. Even though a code smell should not always be removed [9], it
is important to be aware of their existence to be able to manage the technical
debt [7].

To detect code smells, several techniques and tools have been proposed
[10, 11, 12, 13, 14]. In fact, these techniques present different types of detec-
tion strategies, such as software metrics, textual analysis, and AST analysis
[15]. For the software metrics-based detection strategies, thresholds must
be defined to identify code smells. However, defining proper thresholds is a
major drawback due to their innate complexity, being addressed by several
studies that propose methods for threshold derivation [16, 17, 18, 19].

Several studies relying on machine learning algorithms to detect code
smells have been proposed in the literature [11, 20, 21, 22, 23, 24, 25]. For
instance, Fontana et al. [26] provided an extensive comparison among differ-
ent machine learning algorithms for detecting code smells, using the same
data for training and evaluating their performance in the same way. In their
study, almost all algorithms achieved good results for the code smell detec-
tion problem. However, a replication study conducted by Di Nucci et al. [27]
found diverging results. Their study [27] indicates that the detection need
to be improved for several algorithms and code smells.

In a previous work [28], we built a dataset of code smells for twenty Java
systems from the Qualita Corpus [29], by using five code smell detection
tools. This dataset presents realistic characteristics, such as the expected
imbalanced distribution of code smells [30, 31]. We also performed a sta-
tistical evaluation of a representative sample of this dataset ground truth
to verify if the strategies of the tools comply with the human perception of
code smells. In this dataset, we identified and analyzed four code smells:
God Class, Long Method, Feature Envy, and Refused Bequest. Based on
this dataset, we also performed a comparative study of seven machine learn-
ing algorithms [28]: Naive Bayes, Logistic Regression, Multilayer Perceptron,
Decision Trees, K-Nearest Neighbors, Random Forest, and Gradient Boosting
Machine. We found a better performance for tree-based algorithms, such as



Random Forest.

Despite the advances in machine learning algorithms, the quality of data
is an important matter to obtain high-performance machine learning systems.
In a supervised learning scenario, obtaining the labels for the training samples
is one of the main concerns, and it can be very expensive. As the use of
machine learning to resolve problems has become a trend, we can find the
most diverse domains in which models are being developed. In this context, it
is common to find actors with domain knowledge, that we named ezperts, to
support the creation of high-quality data. Their knowledge can help improve
the performance of the models by providing insights and understanding about
the data being used. They can also provide the knowledge to define if some
model’s prediction is right, acting as a labeler or evaluator.

By relying on a service to simulate experts, this paper first proposes a
conceptual strategy to improve the models’ accuracy using expert feedback.
This feedback would be collected, for instance, after the detection being
provided by a tool that uses a trained machine learning model. The feedback
provided by the expert service can be used to update the initial model. We
hypothesize that the model can keep evolving with a qualified feedback from
the expert to improve its accuracy on the next detection. We then conduct
an exploratory evaluation of the proposed conceptual strategy as follows.

We first evaluate the viability of the feedback as a source of improve-
ment in the code smell detection, and searched for the feedback strategy
parameters to assess an optimal configuration for its application. We then
evaluate the strategy by simulating 50 iterations of feedback and model re-
training. We then compare results of the smell detection before and after
feedback. We focus on four code smells, God Class, Long Method, Feature
Envy, and Refused Bequest, detected in our previous dataset of twenty Java
systems [28]. Our goal in this study is to quantitatively evaluate the perfor-
mance improvement of the machine learning models after several iterations
of expert feedback.

Our results indicated that machine learning models achieved an improve-
ment on the detection of all code smells after expert feedback (Section 4). For
instance, for the Feature Envy detection, the mean improvement was about
0.72 in F1, after all feedback cycles. We also found a consistent pattern of
improvement for all code smells. That is, the detection performance presents
a small variation between a few cycles, but in the long run, they all tend to
improve when continuous feedback is provided.

Thus, the contributions of this paper are as follows.



e A conceptual strategy to continuously update a machine learning model
aiming to improve the detection performance of code smells by means
of continuous feedback;

e A dataset of instances of four code smells, God Class, Refused Bequest,
Long Method, and Feature Envy, detected by 5 software tools in 20
open-source Java systems;

e An empirical evaluation of the strategy to measure how much the code
smell detection can be improved once a single-time feedback is provided;
and

e An empirical evaluation of the strategy after 50 iterations of continuous
expert feedback is provided. We simulate the expert feedback by a
service.

The rest of this paper is organized as follows. Section 2 details the pro-
posed conceptual strategy that updates the models based on expert feedback.
Section 3 describes the study design to evaluate our feedback strategy. Sec-
tion 4 presents our results and discusses the implications for practitioners.
Section 5 elaborates on the main threats to the validity of our work. Section
6 describes relevant literature studies and highlights how our work differs
and complements them. Finally, Section 7 concludes our work, presenting
directions for future works.

2. The Conceptual Feedback Strategy

Software development is in constant evolution as should be the tools to
identify or to refactor quality issues, such as code smells. Thus, assessing
the quality of the system is not a one-time task since the quality criteria
can also be evolved. That is, the software quality can degrade over time, for
instance, when new features are implemented or tools are applied to refactor
quality issues. This brings us to the scenario in which the quality assurance
tools should also be able to evolve. In this case, the machine learning models
trained should be integrated into a tool, being able to perform the detection,
after extracting the software metrics from the source code and making the
inference. This became even more necessary and feasible in industry with
support of products and services, such as Amazon Ground Truth! and Google

thttps:/ /aws.amazon.com /sagemaker /groundtruth/
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Data Labeling Service?. That is, in the perspective of the machine learning
operations (MLOps), an area which combines existing practices and processes
of DevOps [32] with the new requirements of machine learning, we need to
keep the model updated and useful for its user.

Several studies evaluated machine learning performance for code smell
detection [26, 27, 28], but none of them evolve the models based on expert
feedback. To fill this gap, we propose in this section a conceptual strategy to
evolve the machine learning models. We also discuss several issues, such as
the complexity of dealing with small amount of feedback in relation to the
training size. We select a pre-trained model based on the Random Forest
classifier to accomplish the code smell detection task. Our aim is to evolve
this model for detecting code smells by means of expert feedback, aligned to
the idea of continuous training the supervised machine learning system dis-
cussed above. Section 2.1 describes the main components of our conceptual
tool and Section 2.2 presents the proposed feedback strategy, in which users
and experts interact with the tool components.

2.1. Feedback-based Detection Tool

This section defines the components of a prototype tool to support the
detection strategy, considering the actors, entities, and some other important
concepts for understanding. First, the actors present in this strategy are:
User and Domain Fxpert. The User is someone in the context of the software
development that wants to detect code smells. For instance, a user could be
a software engineer who intends to analyze the quality of their newly created
code. The Domain Ezpert is someone who is an expert in some domain
or field. In our case, we define it as the Software Engineer Fxpert; i.e.,
a senior professional with high experience in software development or more
specifically oriented to the area of software quality evaluation. While the first
actor, User, is only executing the tool to obtain the detection outputs, the
Software Engineer Ezpert participates in the process by providing feedback
to improve the quality of the detection for all users.

We then developed a prototype tool, named FeedSniffer, with essential
modules to act as a machine learning system that detects code smells. Fig-
ure 1 depicts these modules. They are briefly described as follows.

e Metrics Extraction. The first module of FeedSniffer is responsible

Zhttps:/ /cloud.google.com /ai-platform /data-labeling /docs
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to calculate the software metrics for the source code. Several tools have
been proposed [33] and are available to extract metrics. The software
metrics extracted are the same used for training the models.

e Model Serving. The tool is also responsible to load the trained ma-
chine learning model into memory and use it to perform the detection.
That is, it uses the model to classify the target instance, labeling it as
smelly or not.

e User Interface. An interface that helps the user to perform the
detections. It could be a plugin, a standalone application, or even
just a command-line interface. The current implementation provides a
command-line user interface. For instance, Figure 2 presents a proto-
type screen that indicates how a human expert could provide feedback
on an instance of Long Method detected by Decor. FeedSniffer also out-
puts a CSV file listing all elements (classes and methods) of the project
and their respective labels (i.e., 1 for smelly and 0 for non-smelly).

e Inference Persistence. Besides providing the results in the interface,
this module of FeedSniffer is responsible to store the results in the
Detection Storage. In case the user changes the label of an element
(e.g., turn 1 into 0), the updated list can also be stored.

2.2. The Learning Strategy from Ezxpert Feedback

Figure 3 depicts the cyclic conceptual strategy proposed to improve the
quality of the code smell detection. In a nutshell, the quality of the detection
is improved by keeping the model updated; i.e., by means of the knowledge



Class: com.puppycrawl.tools.checkstyle.checks.
coding.FinalLocalVariableCheck

Method: wvisitToken

Has a Code smell been detected: YES

Code Smell Name: Long Method

Detected by: Decor

Do you confirm this code smell (1-YES, 0-NO)?

Your Answer (0 or 1):

Figure 2: FeedSniffer Command Line Interface for Expert Feedback

of Software Engineer Experts. The process is divided in three main routines.
Each routine can be identified in Figure 3 by the numbers in the circles.
The first routine consists of the execution of a detection tool by the User to
perform the code smell detection. The detection results can be stored into
the Detection Storage for a later analysis. The second routine deals with
the feedback loop. First, the Software Engineer Expert has access to the
Detection Storage. In fact, the User and the Software Engineer Ezxpert can be
the same person since a developer is also supposed to have knowledge about
the software design. Therefore, through a GUI or command-line program,
they can interact with the classification of an element that interest them
(see Figure 2). For instance, if one instance was detected as smelly, but
the metrics that contributed more to this classification do not seem to make
sense to the expert, they could seek to analyze the instance more deeply in
the code. After analyzing the instance, the expert can decide to provide
feedback: it the instance is indeed smelly or not. Experts can select as many
detections as they want to analyze to provide feedback. This selection can
be facilitated by explainable ML models, such as the SHAP results [34], and
by the model’s confidence. In our exploratory evaluation, we create a service
to act as an expert by accessing the ground truth of our dataset (see Sections
3.3 and 3.4).

After providing feedback for a set of instances, the third routine is trig-
gered. The automated pipeline updates the model currently used by the
tool. As the number of instances used for training is, in general, much larger
than the set of feedback, it is necessary to provide some augmentation for
the data, by prioritizing them and making them impact the retraining of the
model. The model retraining, in this case, is done by merging the augmented
data with the initial data. Finally, after retraining the model, we can finish
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Figure 3: A Strategy to Detect Code Smells based on Continuous Feedback

the process by deploying the model.

As we have made some choices, two important aspects in the third routine
of the process are: how it is executed and the other alternatives. The first
aspect is related to how we retrain the entire model. That is, we keep the
initial training data available from the dataset and, after merging it with the
feedback data, we retrain the model entirely, but keeping the found hyperpa-
rameters. We also evaluated other alternatives, such as the online and batch
training strategies, in which the model is trained considering the existent pa-
rameters when a new observation or a set of new observations are available.
However, we prefer the offline training as our dataset is not very large and
it does not take too long to train the model from the scratch. Therefore, we
think it is a simpler approach when dealing with a tree-based model, such as
the Random Forest classifier. Finally, we have also experimented with some
methods that use online bagging for retraining ensembles [35], but we have
not found improvements.

Another decision is related to the Data Augmentation step (see Figure
3). Several techniques can be used to perform this step. In fact, this is
one of the focuses for some machine learning areas, such as computer vision
[36]. In our scenario, with numeric features, we evaluated some oversampling
techniques, such as SMOTE [37], and Adaptative ones [38] for the training



in the first phase of this study. However, as our goal is to provide more
importance to the feedback data in the strategy, we decided to perform a
simple oversampling by duplicating the data. Other alternatives could in-
clude evaluating a meta-model to deal with the data prioritizing. We did not
delve into this possibility, to keep the focus of our research. Although it may
be an interesting venue for future work, the current strategy is well defined
in terms of components and steps. Further work could extend and evaluate
other techniques, by comparing them with our results found when using the
duplication oversampling.

3. The Exploratory Study Design

This section provides the study design to evaluate the proposed strategy.
Section 3.1 defines the research questions and metrics used for evaluating
the detection performance. To answer the research questions, we followed
five steps — Dataset Collection, Ground Truth Creation, Data Preparation,
Single Training Evaluation, and Continuous Training Evaluation — described
in Sections 3.2 to 3.6.

3.1. Research Questions and Evaluation Metric

The first aspect to be considered is how the model retraining with the
experts’ feedback affects its performance. Therefore, before going into the
evaluation of the entire process, we aim to measure how much the detection
can be improved when the retraining occurs only once. We then define the
following research question (RQ1).

RQ1: How much the model’s performance can be improved by one-time
feedback?

Moreover, we also need to evaluate the model performance after several
cycles. That is, let’s suppose that after some cycles of feedback the model
could start to miss a lot of detections, that were being identified correctly be-
fore. Thus, to evaluate how the strategy improves the detection over several
feedback cycles, we define the following research question (RQ2).

RQ2: How much the model’s performance can be improved by continuous
feedback?

Evaluation Metric. To correctly assess the performance of the models and
obtain a valid comparison, it is important to select suitable metrics, such as
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AUC-ROC [39] and Matthews Correlation Coefficient (MCC) [40]. In fact,
code smell datasets are highly imbalanced (Section 3.3). For instance, for the
Long Method smell, we have less than one percent of smelly instances. Thus,
biased models (e.g., always predicting the instance as non-smelly) could be
considered good models by some direct metrics, such as accuracy, which
would not be reasonable. Since the code smell datasets are highly imbalanced,
we evaluated feedback strategy mainly with F-Measure using the unitary
weight (F1). However, we also made our raw data publicly available to allow
for further analysis with different evaluation metrics. F1 is the harmonic
mean of Precision and Recall and these evaluation metrics are defined as
follows. Let’s consider TP the True Positives, FP the False Positives, TN
the True Negatives, and the FN the False Negatives.

Precision. It measures how much the predictions of smelly instances are
correct. The precision is calculated as:

TP

Precision = m—w

Recall. It measures how much of the existent smelly instances were detected
by the model. The recall is calculated as:

TP

Recall = ————
T TP FN
F1. F1 is the harmonic mean of Precision and Recall, defined as follows.

P19 Precision x Recall

Precision + Recall

3.2. Dataset: Smells, Systems, and Metrics

Code Smells. In this work, we focused on four code smells: God Class,
Refused Bequest, Long Method, and Feature Envy. God Class [1] consists
of a class that accumulates several responsibilities. Refused Bequest [1] is
also related to a class. It defines a class that inherits from another but
does not even use the attributes and methods inherited. Long Method [1]
is related to a method and consists of a method with a large and complex
behavior, providing multiple functionalities. Finally, Feature Envy [1] is also
related to a method and consists of a method that is more associated with
another class than its own. We have selected these smells based on previous
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studies that analyzed the perception of code smells by developers [41, 42].
For instance, Palomba et al. [41] investigated how developers perceive the
severity of the code smell. They have also investigated how often they identify
them. Considering a range from 1 to 5, they found that God Class and Long
Method were classified with the highest severity, with a median value of
5 and 4, respectively. For the Feature Envy and Refused Bequest smells,
the degree of severity achieved a median value of 4. Other studies [42, 43]
reported similar findings, but they mostly found Refused Bequest as harmful
as God Class and Long Method.

Software Systems and Metrics. In a previous work [28], we created a
dataset with 20 open source Java systems that contain instances of four code
smells. The systems were mainly extracted from the Qualita Corpus [29],
with most of them being used in other machine learning studies [26, 27].
Table 1 presents the complete list of 20 selected systems. The first column
presents the name of the system, while the second column presents a brief
classification according to its purpose [28, 29]. The third and fourth columns
depict the size of the systems in terms of number of classes and number
of methods, respectively. For every class and method in the dataset, we ex-
tracted 17 metrics for the class level and 13 metrics for the method level. The
class level metrics were extracted using the tool VizzMaintenance [44]. This
tool calculates known metric suites [45, 46]. The method level metrics were
extracted by the CK Metrics tool [47]. The tool computes known metrics,
such as Weighted Method Count and more experimental ones, like Quantity
of Assignments. We selected these tools and metrics because (i) both tools
export measurement data in a way we could integrate to FeedSniffer and
(i) these metrics have been used in previous work about machine learning
detection of code smells [28]. The full list of extracted metrics can be found
in our online replication package [48].

3.3. Ground Truth Creation

To create the ground truth of code smells, we combined the result of five
automatic detection tools: PMD?, JDeodorant [49], JSpirit [14], an imple-
mentation? of DECOR [12], and Organic [50]. We rely on the agreement
among tools in a majority voting ensemble. It consists of comparing the

3pmd.github.io
4ptidej.net /publications /Keyword /CODE-AND-DESIGN-SMELLS.php
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Table 1: Selected Systems

Name Description Classes Methods
Checkstyle IDE 511 2,620
Commons Codec Tool 145 1,481
Commons 10 Tool 282 2,638
Commons Lang Tool 642 5,947
Commons Logging Tool 74 546
Hadoop Middleware 3,703 18,111
Hibernate Database 6,745 43,828
HtmlUnit Testing 882 7,485
JasperReports Data Viewer 1,642 14,880
JFreeChart Tool 1,037 11,528
JHotDraw 3D/Graphics 732 6,641
JMeter Testing 1,023 8,689
Lucene Tool 4,353 20,135
Quartz Middleware 268 2,495
Spring Framework Middleware 5,935 30,321
SquirrelSQL Database 73 550
Struts Middleware 2,139 12,656
Tapestry Middleware 1,957 9,276
Tomcat Middleware 1,794 14,017
Weka Tool 1,663 18,110

Total 35,600 231,954

results among the tools to determine the final outcome. These tools have
some limitations, as each one can be used to detect only a small subset of
code smells. Therefore, we have identified which tools could detect the same
code smells. The goal was to have three different tools for every code smell.
Thus, with this voting, an instance (class or method) is considered smelly if
two or more tools detected the same smell.

As expected, the number of smell instances is small for all types of code
smells when compared to non-smelly instances [30]. For God Class, about
4.77% of classes were detected as smelly (1,689 out of 35.6K classes). For
Long Method, this proportion decreases even more, only 2,023 out of 232K
methods were labeled on the ground truth as positive, i.e., 0.87% of all meth-
ods. For Feature Envy, considering the 232K methods, 3.46% instances were
considered as smelly (8,016 instances). For Refused Bequest, 8.96% of classes
were labeled as positive for this code smell (3,190 out of 35.6K classes).

We evaluate the agreement between the tools’ results and the human
perception, since we know about the subjective nature of code smells detec-
tion [2]. The manual evaluation was performed by 10 software engineering
researchers; i.e., PhD candidates and junior developers in our research lab.
Due to the large size of the dataset, a complete evaluation was not feasible.
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Instead, we rely on statistically sampling. First, for every code smell, we
determined a sample size to meet a confidence level of 90% and a maximum
error of 10%. We then randomly extracted the necessary sample size from
our ground truth and grouped the samples by system. Each researchers man-
ually evaluated code smells of two systems and then we applied the Fleiss
Kappa [51] to compute the agreement (a generalization of the Cohen Kappa
[52] measure). With Fleiss Kappa, we were able to compute the reliability
of the agreement between more than two raters. For every code smell, we
computed this agreement, which is presented in Table 2. As can be seen from
Table 2, for all smells we had the agreement higher than 0.2, indicating a
significant agreement between our voting strategy and human perception.

Table 2: Evaluation Agreement

Code Smell Agreement | Interpretation
Refused Bequest | 0.65 Substantial
God Class 0.47 Moderate

Long Method 0.41 Moderate
Feature Envy 0.35 Fair

3.4. Data Preparation

We defined four groups of datasets (one for each analyzed code smell)
instead of only one dataset. The features are the set of software metrics
used to characterize each instance (class or method) and the target is a
binary variable indicating if the instance is smelly or non-smelly. It is worth
mentioning that not every system in the dataset contains all four code smells
analyzed in this work. Table 3 depicts how many systems are affected by each
code smell in our datasets. Each code smell is represented by one line and its
name is presented in the first column, while the second column contains the
number of systems with at least one instance of the respective code smell. We
can observe in Table 3 that only the God Class smell was found in all systems,
followed by Feature Envy with fifteen systems affected, Long Method with
thirteen systems, and finally, Refused Bequest with eleven systems.

Furthermore, due to limited resources, we avoid an evaluation with a
large group of actual experts to provide feedback for all experimental runs.
As a result, we decide to create a service to act as an expert by accessing the
ground truth of our dataset. Therefore, in the context of our experimental
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Table 3: Number of Systems with Each Code Smell

Code Smell Number of Systems
God Class 20
Feature Envy 15
Long Method 13
Refused Bequest 11

setup, we define Oracle as a service that represents the Software Engineer
Expert (see Figure 3). The Oracle is responsible for identifying the wrong
detections, by accessing the ground truth available for a specific instance.
From these wrong detections, the Oracle is able to provide a fraction of
correct detections as feedback (e.g., 10%, 20%).

3.5. Single Training Evaluation (RQ1)

To compare the effect of updating the model with feedback from the
experts, we designed two moments for the experimentation: before and after
any feedback is provided. One important choice for our strategy is which
machine learning model to evaluate. Motivated by our previous study [28], in
which we evaluated the performance of 7 different models, we have found that
Random Forest (RF) and Gradient Boosting Machine using XGBoost Trees
(GBM) were the best models to detect all four smells. Table 4 summarizes
the F1 performance for both models.

Table 4: F1 Scores for Random Forest and GBM

Model Code Smell Mean F1 | F1 STD
God Class 0.846 0.010
RF Long Method 0.233 0.052
Feature Envy 0.281 0.058
Refused Parent Bequest 0.641 0.024
God Class 0.839 0.020
Long Method 0.211 0.092
GBM Feature Envy 0.146 0.119
Refused Parent Bequest 0.593 0.102

The first column presents the machine learning model, while the second
column shows the code smell under evaluation. The third and fourth columns
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present, respectively, the mean performance and the std standard deviation
(STD) of the F1 scores across the cross-validation. The items in italics repre-
sent the best performance. Complete results including Accuracy, Precision,
and Recall can be found on [28].

As can be seen in Table 4, Random Forest obtained the best F1 mean
scores across the 10-folds. However, we can observe that the performance
for both smells at method-level (Long Method and Feature Envy) were poor
(less than 0.3). This indicates the need of understanding how different tech-
niques can improve the model classification, such as incorporating developer
feedback. Our evaluation process for each Target System Dataset (TSD) is
defined as follows.

1. We train a model using TSD’s training data and the Random Forest
algorithm, including its hyperparameters, found as a good choice in our
previous work [28].

2. This trained model is used to detect the code smells on the test data,
which consists of the instances of the target system.

3. The performance metric (F1) is calculated for the detection results.

In the second moment, we perform the following procedures to update the
models with the feedback and evaluate their performance against the initial
ones, obtained from the first moment. For each TSD:

1. We ask the Oracle for the feedback from the detection results obtained
in the first moment. In this step, the amount of feedback requested
varied. This amount is defined as the Feedback Size (N).

2. We process the feedback data by duplicating them. In this step, the
amount of oversampling applied varied and it is defined as the Quer-
sampling Ratio (K).

3. The initial training data is merged with the oversampled feedback data
and is used to retrain the model, keeping the existing hyperparameters.
We also remove from the initial test data the data provided as feedback,
keeping the assessment fair.

4. The retrained model is used to detect the code smells on the test data.

5. The performance metrics are calculated again for the new detection
results.

The Feedback Size (N) and Oversampling Ratio (K) provided by Oracle
varied, as we intend to explore different values. The reason is because we
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do not know upfront a common value, requiring empirical evaluation. For
Feedback Size (N), we tried seven possible configurations: 10%, 20%, 30%,
40%, 50%, 60%, and 70%. For the Owersampling Ratio (K), we defined
eleven configurations: 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%,
and 50%.

3.60. Continuous Training Fvaluation (RQ2)

A key difference for this design is the control of the experimented vari-
ables. Based on the results of RQ1, Feedback Size (N) was kept constant
with the value of 10% in the continuous feedback evaluation. The reason is
that our goal here is not to explore the effects of large amounts of feedback
at once, as we expect it to be provided more incrementally. First, we have
conducted a pilot to evaluate the execution of seven cycles of the strategy.
The pilot was enough to make clear the potential of the strategy and then
we have expanded the number of cycles to 50. As it is not guaranteed nor
expected that after several cycles the detection to be perfect (i.e., it would
achieve the maximum value of a performance metric) these fifty iterations
were enough to demonstrate the effects of the model updating in the code
smell detection.

The other important factor to consider, which was also defined, is the
Oversampling Ratio (K). In this case, we defined a fixed value of 1% for two
reasons. First, this value is not aggressive, which is quite important in the
strategy context, since the model is updated more than one time. For higher
values, the model could lose its generalization power, as the data from the
other systems would begin to be overwhelmed by the duplicated feedback
data from the target system. Second, through the results of the pilot study,
we found some quantitative indicators that most of the best results have used
lower values for the oversampling configuration, in special, the value of 1%.

4. Results and Discussion

This section presents and discusses the results of this study. Section 4.1
reports the results regarding the single training evaluation, while Section 4.2
presents the results regarding the continuous training evaluation.

4.1. Single Time Feedback Results

Using the data collected before and after the feedback, we aim to un-
derstand for each system which configurations were superior to detect code
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smells. That is, what are the best K and N configurations to update the
model. In order to compare the models before and after the feedback, we
focus on F1 as the main comparison metric. However, we made our raw data
publicly available for further analysis with different evaluation metrics, such
as Precision, Recall, AUC-ROC [39], and MCC [40] .

Figure 4 presents this comparison. In the horizontal axis (F1 before
Feedback), we can observe the F1 score of the detection performed by the
model before the feedback, and in the vertical axis (F1 after Feedback) the
best F'1 score achieved after model updating with single time feedback. Each
instance in the chart is a system, and we can observe that the different marks
are related to each code smell.

Note that the diagonal line in Figure 4 provides a visual way to identify
if the feedback improved the detection or not. We can observe that the
detection was not improved for only one system, and it was actually worsened.
We also noticed that the farther from the line the marker is, the greater the
difference in performance after the feedback. For instance, for one of the
target systems, F1 was around 0.2 before feedback. However, after feedback
with one of the provided configurations, it reached an F1 value of about
0.8. Nevertheless, to make sure they are significantly different, we have
performed statistical tests to confirm it. Therefore, we state the following
null hypotheses:

Hy: Updating the model with feedback has no effect on detection perfor-
mance.

We perform the Shapiro-Wilk test for normality for each one of our ex-
perimental groups. We have selected this test because the normality tests
are influenced by the sample size. As our samples are small (less than 30
units), this test will be less affected by Type I error (i.e., false positive). We
found that for all smells except the God Class sample before feedback, the
detection performances (i.e., measured by F1) follow a normal distribution
with a significance level of 99%.

Since they follow a normal distribution, we applied the paired T-test for
the samples of the code smells Long Method, Feature Envy, and Refused Be-
quest. For the samples of the God Class code smell, we applied the Wilcoxon
signed-rank test, which is a non-parametric version of the paired T-test. Con-
sidering the following p-values obtained from the tests: 1.03 x 10™* (God
Class), 1.96 x 1077 (Long Method), 6.06 x 107" (Feature Envy), 6.45 x 107°
(Refused Bequest), we found that for all code smells, we could reject the
null hypothesis. That is, updating the model with feedback affects detection
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Figure 4: Performance Comparison

performance, with a significance level of 99%.

Considering the results depicted in Figure 4, in which we can see the
improvement in the detection performance and the statistical significance
provided by the hypothesis testing, we evaluated how much the model has
been improved. We analyzed the performance differences by each code smell,
separately. Figure 5 presents a boxplot with the distribution for the differ-
ence between F1 before feedback and F1 after feedback. The horizontal axis
presents the segmentation by code smells, while the vertical axis presents the
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distribution of the difference between F1 scores. That is, the F1 difference
between the detection performance before and after using the feedback.
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Figure 5: Performance Difference per Code Smell

We can observe that the performance improvement among the code smells
varies, similar to the results in Figure 4. One of the clearest differences
is the variation in performance between God Class and the other smells.
One possible reason may be that the model had good performance from the
beginning (before feedback) and there was not much space for improvement.
It was also the only one in which the feedback got to worsen the detection
performance, although in a little scale. Considering the other three smells,
we notice that improvement was close among them, as we can see for the
median lines of the boxplots, always close to 0.25. Still, by analyzing the
means, indicated by squares inside each boxplot, it is possible to observe
that Refused Bequest presented slightly better improvement results. While
Feature Envy and Long Method achieved an average improvement of 0.25
and 0.23, respectively, Refused Bequest achieved an average improvement of
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0.3. This result is reinforced by the size of the box above the median line
and the outliers with even better results.

Notwithstanding, we can further explore the configurations and their re-
sults. We can observe independently from the code smell groups which values
of Oversampling Ratio (K) and Feedback Size (N) provided the best results.
Although we could not compare them directly because of their heterogeneous
nature, we can obtain some insights looking for the performance results of
the systems. For each system, we retrieved the configuration responsible for
the best detection performance. We then calculated the frequency in which
each configuration appeared. For some systems, the best performance was
obtained for more than one configuration. In this case, we compute for all
values used, not prioritizing any configuration. Therefore, the total num-
ber of configurations can exceed the sum of the number of systems in each
group of code smells. Figure 6 presents this frequency regarding the available
configurations. In the vertical axis, we can observe the number of systems
in which the configuration provided the best detection performance. In the
horizontal axis, we can observe the configuration. The label K represents
Oversampling Ratio, and the label N represents Feedback Size.

As expected, the best results were achieved when the expert provides
more feedback. Regarding oversampling, we found in most cases the best
results provided by the configuration with the smallest Oversampling Ratio
(1%). We can observe in Figure 6 that 24 out of the 58 targets achieved
the best performance when the expert provides more feedback (i.e., N=70).
Regarding oversampling, we found in most cases the best results provided
by the configurations with the smallest oversampling ratio (i.e., K=1%). For
some systems, the best performance was found with less feedback and then
stabilized. In this way, we understand why the values 50% and 60% also
appear more frequently in the top results. In fact, for 4 out of the 58 targets,
the same F1 was achieved by three different feedback sizes: 50%, 60%, 70%.
Regarding Oversampling Ratio, we found that except for the 1% found on
the top configurations, and the 5% found in a few cases, the other ratios were
found in one to four systems that achieved the same performance. Figure
6 also indicates the cases in which the high oversampling ratios were found
paired with large feedback sizes (greater than 50%). The most extreme cases
are related to two small systems with few instances that achieved the max-
imum F1 for twenty-one configurations, and twelve different configurations,
respectively. These systems are responsible for almost all configurations pre-
sented in Figure 6 with a count below three.
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Figure 6: Best configurations

Note that for the feedback size, these results are not saying that detection
is improved only after a great number of instances with the feedback. We
can only observe that, in general, the more feedback is provided, the better
the model behaves. For the oversampling rate configuration, we found that
less oversampling is better. Finally, considering all these analyses, we can
answer RQ1 as follows.

Answering RQ1. The performance improvement varies according to the
code smell, with a wide improvement space, reaching an increase of up to
0.63 in F1 for some systems. God Class detection presented an average
improvement of 0.1 in F1. Feature Envy, Long Method, and Refused Bequest
achieved an average improvement of 0.26 in F1.

4.2. Continuous Feedback Results

This section presents the analysis performed in the data obtained aiming
to answer the second research question (Section 3.6). That is, we evaluate
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how continuously retraining the model with the expert feedback affects the
model performance.

Figure 7 summarizes the model performance across the incremental feed-
back cycles for each code smell group. Each row in this figure is related to
one code smell and it presents two charts divided into two columns. The
charts in the left column present the evolution of the F1 metric in the ver-
tical axis across the feedback cycles displayed in the horizontal axis. We
can observe two series: the black line represents the median value and the
blue line represents the mean value for all systems evaluated. The charts in
the right column present the evolution of the F1 metric in the vertical axis
across the feedback cycles displayed in the horizontal axis. However, as we
performed ten repetitions when selecting the 10% feedback sample, we also
present the 95% confidence interval for the scores, to avoid selection bias in
the evaluation. Hence, the black lines also represent the mean value for F1,
while the shading outlines the confidence interval area. It is noteworthy that
we plotted the mean twice to analyze two different perspectives. For the
charts in the left column, we aim to analyze the distance between the mean
and the median and to understand if there is more variance of the results
across the different systems evaluated. For the charts in the right column,
we aim to analyze the impact of the random shuffling of the feedback sample
through the mean and the confidence interval.

For the first smell, God Class, we can observe similar results to the ob-
tained on the previous design. In general, each cycle provides a small increase
in F1. At a short pace, the performance is increased, but as it reaches a great
F1 (above 0.9), it seems to reach an asymptotic close to the maximum F1
possible. We understand this behavior as a small space for improvement. As
we discussed before in Section 3.6, we do not expect the F1 score to reach
the maximum value, even though it can happen for some systems. Looking
at the God Class chart in the left column, we can observe only a small dif-
ference between the systems and, in general, they behave the same. From
the chart in the right column, we observe that the selection of the feedback
sample across the cycles does not affect the results, as the confidence interval
is really small.

Regarding the detection of Long Method, we can observe a linear trend
of performance increase. However, we first observe that both median and
mean decrease in the first iterations with the feedback. This may be due to
the random sample selection. After the first cycles, the performance starts
to increase and stabilize when F1 reaches around 0.9. We also observe a
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small difference between the mean and the median, as most of the systems
behave the same, increasing only a little bit less than some others. From
the chart in the right column, we observe a larger band for the confidence
interval. This means that, depending on the instances present in the feedback
sample, the performance may vary between cycles. However, by looking at
the broader perspective, we can observe a significant improvement between
the fifty cycles. For instance, when looking for differences between the first
cycle, without feedback, and after the last cycle, we found an improvement
in F1 greater than 0.6. That is, F'1 increased from an average of 0.26 to 0.92.

The Feature Envy detection presented an improvement behavior too, but
not linear as the previous smell, Long Method. The first twenty cycles present
a faster improvement, increasing from the average F1 of 0.08 to an average
F1 of about 0.5. In the last thirty cycles, it kept increasing until reaching an
average F1 of 0.79. However, observing the blue line of the left column chart,
we can notice that the median presents a higher value. Investigating the
results deeply, i.e., per system, we found that some systems did not perform
well and had a very small increase, lowering the average value. However,
in general the systems performed well as can be observed by the black line
(median). For this code smell, we found two patterns of improvement. Most
of the systems increased their performance since the first cycles. However,
despite also improving, some systems follow a much slower pace until the end
of the fifty cycles. Analyzing these systems, the main common attribute is
the high number of methods. This suggests that F1 could further increase
by executing more cycles. Looking at the chart in the right column, we
also observe that the confidence interval is well contained and does not seem
to affect the overall result. However, we can observe that the band becomes
broader in the last cycles, although in general, the improvement is clear when
looking over all cycles.

Finally, we have the Refused Bequest smell. For this one, we can observe
a behavior similar to Feature Envy, in which a trend of increase in detection
performance is presented since the first cycles. However, differently from
the Feature Envy detection, the two lines, representing the median and the
mean of F1, remain close throughout the cycles. All systems evaluated had
their performance increased. Worth noticing that after only ten cycles, the
mean F1 has almost doubled, from 0.37 to 0.71, ending with an average F1
of 0.94. The selection of the feedback sample also did not impact the results
in general, as we see in the confidence interval band from the chart in the
right column. Through these analyses, we can answer the RQ2 as follows.
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As can be seen, there is indeed an improvement in the F1 measure when
we provide feedback. However, retraining large models can be costly, since
it requires powerful hardware resources to train and retrain more complex
models for larger datasets; e.g., a server/database in which our Users and
Experts can insert and update the instances. For the industry, online services
providers, such as Amazon Web Service > and Microsoft Azure °, can be
used for the model retraining. However, we also further research work to
investigate and minimize costs, for instance, associated with the impact of
using feedback batches.

Answering RQ2. The performance improvement varies according to the
code smell. God Class detection presented the smaller average improvement,
an increase of 0.13 in F1, as the initial performance was already high. The
Long Method detection presented an average improvement of 0.66 in F1.
For the Feature Envy and Refused Bequest detections, we found average
improvements of 0.72 and 0.58 in F1, respectively.

5. Threats to Validity

Despite the careful design of our empirical study, some limitations may
affect the validity of our results. In this section, we discuss some of those
threats and our actions to mitigate them, organizing them by construct,
internal, external, and conclusion validity [53].

Construct Validity. With respect to the number of instances used to eval-
uate the models after several cycles, it is important to note that the number
of test instances does not drive the results. That is, as we remove the feed-
back samples from the test data to keep the evaluation fair, we also evaluated
how many instances were removed and if the results could be impacted by
a small number of instances left to be evaluated. First, we did not keep the
cycles running after the number of feedback available had finished, avoiding
increasing the performance for the last cycles. Then, we also evaluated how
many instances from the initial set were removed from the initial amount.
As we have tested the entire dataset through our systems cross-validation,
we compare the initial size of the test data for each code smell, before and
after the last cycles, for each system.

Shttps://aws.amazon.com/pt/
Shttps://azure.microsoft.com/
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Internal Validity. Regarding the internal validity of the continuous training
evaluation study, as we set the value of the feedback size, we also replicate the
process, changing the 10% randomly selected for feedback from each cycle.
We aim to mitigate the possibility of obtained results being influenced by the
selection of the instances belonging to the feedback. For instance, if in the
first cycle the majority of the feedback is related to false negatives, this could
influence our model differently from if the majority of instances in the first
cycle were false positives. Beyond the fact that we can estimate the error of
our model, through these replications, we can obtain the confidence interval
for our measurements. Our focus is not on obtaining a fixed F1 value, but
a range, providing more confidence to our results, even if more systems were
added to the model. In total, ten repetitions for each system/group were
performed. Each repetition preserves the random seed for all code smells
and systems on its execution.

External Validity. First, concerning the external validity of our studies,
the systems evaluated may not represent all systems available, and they are
all written in Java. That is, our results depend directly on how the dataset
was constructed. For instance, we analyze systems in the Qualita Corpus,
which may present different levels of maturity, sizes, and domains of propri-
etary systems. Moreover, we are aware that the learning performance for
systems from different languages and domains may lead to different results.
Our goal was to propose and evaluate our feedback strategy, serving as an
step stone to studies that explore different datasets. We highlight that the
strategy itself and the experimental studies designed to evaluate it are not
dependent on the programming language and could be performed in differ-
ent datasets. To manually create a dataset for a large number of systems
was not feasible due to our time constraints, since experts should inspect all
system’s classes and methods. To address this limitation, we opted to create
our ground truth by using five different detection tools, that uses different
identification approaches. To mitigate the bias of false positives, we have
used a voting strategy, in which at least two tools have to agree that the
instance is smelly. Consequently, we do not rely on the specific output of a
tool, but on their agreement. We further cross-validated a sample of code
smells detected with our voting strategy with ten developers, and found an
fair-substantial agreement.

Conclusion Validity. Regarding the conclusion validity of the single train-
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ing evaluation study, the results found could be based on the wrong choice of
the statistical tests. To avoid it, we performed previous analyses regarding
the normality of the samples and their dependency relation. Thus, we applied
two tests separately to mitigate this threat. Another threat, for both studies,
is the performance metric that drives our conclusion. As we have discussed
in Section 3.1, the main metric selected to evaluate the performance is the F1
score. The main reason is that we do not want to prioritize neither precision
nor recall. We also are dealing with heavily imbalanced data. Hence, we are
focusing on the metrics related to the class that matters, the positive one
that represents the presence of a smell.

6. Related Work

Several detection techniques and tools have been proposed in the liter-
ature. In fact, the adoption of machine learning techniques to detect code
smells has became a trend [20, 21, 22, 23, 24, 26, 27, 54, 55]. For instance,
Khombh et al. [11] proposed a Bayesian approach which initially converts ex-
isting detection rules to a probabilistic model to perform the predictions.
Khomh et al. [22] later extended their previous work [11] by the introduc-
tion of Bayesian Belief Networks, improving the accuracy of the detection.
Maiga et al. [23, 24] proposed an SVM-based approach that uses the feedback
information provided by practitioners. Amorim et al. [20] presented an expe-
rience report on the effectiveness of Decision Trees for detecting code smells.
They choose these classifiers due to their interpretability [20]. Thus, most
of the proposed works focus only on one classifier. They were also trained
in a dataset composed of few systems and, consequently, the results may be
positive towards their approach due to overfitting.

Other studies [21, 26, 27, 28] evaluated and compared the performance
of different machine learning algorithms on distinct sets of systems. For
instance, Fontana et al. [21, 26] performed a larger comparison of classifiers
[26]. The notorious impact of their work was the great performance reported.
Even naive algorithms were able of achieving good results using a small
training dataset. Di Nucci et al. [27] replicated the study and verified that the
reported performance could be biased by the dataset and some procedures,
such as unrealistic balanced data, in which one-third of the instances were
smelly. Our previous work [28] contributed with further empirical evidences
on the use of machine learning algorithms for code smells detection by using
a larger dataset of curated systems.
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Table 5 presents a comparison summary between similar previous
work [26, 27] and ours with respect to the used dataset and ML algorithms.
The columns are related to each work. The rows present characteristics of
the studies, such as which code smells were studied. In our work, we aim
to contribute with empirical evidences on the use of machine learning algo-
rithms for code smells detection, by overcoming the known limitations [27].
The following considerations can also be made. (i) The dataset used in this
paper is very close to the real world, being extremely imbalanced, with a
very low proportion of smelly instances. For instance, for the Long Method
smell, less than 1% of the methods are smelly. We observe in the last column
of Table 5 that besides the lower number of systems, the number of instances
in our dataset is much bigger than on other studies. (ii) Our features were
analyzed, and only two strong correlations have been found and discarded.
As shown in Table 5, on the Features row, we use less metrics. However,
the feature selection of a replication study [27] detected that most of the 143
features were high correlated and were discarded accordingly. (iii) We found
that it is harder to obtain good performance for smells at method level.

Few studies address a feedback process to improve the detection of code
smells as we do here. Hozano et al. [57] proposed a platform to consider the
developer feedback, to create personalized rules for a rule-based detection
technique. However, we did not found in their work how the rules evolve.
Their evaluation was also performed only on two small systems and using
only the accuracy metric. It may lead to an incorrect conclusion, without
taking into consideration the data distribution. Liu et al. [58] proposed an
automatic way to update the thresholds used to perform code smell detection.
This technique is based on feedback provided by a software engineer. Their
strategy focuses on making it possible to interact with the threshold defini-
tion by explicitly directing the detection regarding one metric, in their case,
precision. However, different from our work, they focused on finding metrics
thresholds to provide better detection. Meanwhile, our goal was to propose
and evaluate a high abstraction strategy, aiming at providing a trained ML
model with explicit feedback from a expert service.

7. Conclusion

Code smells are important indicators of quality improvement opportuni-
ties in the source code of a system. Although many techniques and tools
have been proposed, we lack a continuous improvement alternative for the
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machine learning based detection of code smells. In this paper, we proposed
a conceptual strategy to improve the code smell detection through a con-
tinuous feedback approach, in which a machine learning model is retrained
over the iterations with a expert that provides feedback about the detection
results. We also evaluated the strategy with an exploratory study in which
we experimented different parameterizations and simulated the use of the
strategy with fifty cycles of feedback in a dataset of 20 software systems.
We found that by using the proposed strategy, code smell detection can be
improved incrementally for all code smells. For the detection of God Class,
a code smell with a detection performance initially good, we achieved an
average improvement of 0.13 in terms of F'1. For the other code smell related
to a class, Refused Bequest, after all iterations of the strategy, we achieved
an average improvement of 0.58 in terms of F1. For the method level code
smells, Long Method and Feature Envy, we achieved an average improvement
of 0.66 and 0.72 in terms of F1, respectively.

As future work, we foresee some opportunities to further improve the cur-
rent strategy or its evaluation. For instance, our study used 20 systems from
the Qualita Corpus, and replication studies could evaluate different datasets,
such as the MLCQ [59]. They could also investigate factors influence the most
on the effectiveness of code smell detection, such as system size, number of
smells detected, maturity and CI/CD. Another possibility is to combine the
ground truths of several datasets, generalizing the model, to evaluate differ-
ent programming languages. Concerning our strategy, a possibility for future
work is to generalize our feedback strategy to incorporate different machine
learning models, such as deep learning and LLMs [60], and to evaluate the
performance when they receive multiple feedback sources. We would like to
understand how noises in the provided feedback impact the models. That is,
to what extent the models deal with this wrong feedback. As consequence,
we can further enhance the strategy by introducing a routine that checks
for noise and decides what to do with the feedback, e.g., not updating the
model, adjusting the oversampling ratio, asking for a second expert to pro-
vide feedback, etc. We can also evaluate the prioritizing of which instances
to ask for feedback. As we observed in our results, the random selection of
the group of 10% of instances to be given as feedback did not impact the
detection’s performance. However, there are other techniques from related
fields (e.g., Active Learning) that could lead us to a way of selecting a set of
instances that could make the performance of the detection improve faster
(i.e., with fewer cycles). Finally, it is worth mentioning as future work an
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experimental evaluation with humans; i.e., actual software experts [61]. For
this evaluation, our prototype tool could also be improved, for instance, with
a friendly user interface.
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Table 5: Comparison of Selected Related Work

Fontana [26] | Di Ours
Nucci [27]
Systems 74 20
Sample Size 1,680* \ 3,360%* 267,000
Data Class, God Class,
God Class, Feature Envy,

Code Smells

Feature Envy,
Long Method

Long Method,
Refused Bequest

iPlasma, PMD, JD;é)d.Ol.a?nt’
Detection Tools Fluid Tool, PII\)/EE ’
(Ground Truth) Antipattern Scanner, i
. DECOR,
Marinescu[56] -
Organic
Ground Truth Manual Manual

Validation (Entire sample) (Statistical sample)
Decision Trees
Decision Trees Random Forest
Algorithms Rule Based Naive Bayes

(no variations)

Random Forest
Naive Bayes

Logistic Regression
KNN

SVM/SMO Multilayer Perceptron
Gradient Boosting Machine
Features 143 30
Feature
Selection No Yes Yes
Optmization Grid Search Random Search

* One dataset for each code smell, each one with 420 instances
* The replication study claims to have duplicated the original

dataset. This number was calculated based on this information
and is not present in the original work.
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