
Asynchronous Technical Interviews: Reducing the Effect of
Supervised Think-Aloud on Communication Ability

Mahnaz Behroozi
Mahnaz.Behroozi@ibm.com

IBM, USA

Chris Parnin
cjparnin@ncsu.edu

North Carolina State University, USA

Chris Brown
dcbrown@vt.edu
Virginia Tech, USA

ABSTRACT

Software engineers often face a critical test before landing a jobÐ

passing a technical interview. During these sessions, candidates

must write code while thinking aloud as they work toward a solu-

tion to a problem under the watchful eye of an interviewer. While

thinking aloud during technical interviews gives interviewers a

picture of candidates’ problem-solving ability, surprisingly, these

types of interviews often prevent candidates from communicat-

ing their thought process effectively. To understand if poor per-

formance related to interviewer presence can be reduced while

preserving communication and technical skills, we introduce asyn-

chronous technical interviewsÐwhere candidates submit recordings

of think-aloud and coding. We compare this approach to traditional

whiteboard interviews and find that, by eliminating interviewer

supervision, asynchronicity significantly improved the clarity of

think-aloud via increased informativeness and reduced stress. More-

over, we discovered asynchronous technical interviews preserved,

and in some cases even enhanced, technical problem-solving strate-

gies and code quality. This work offers insight into asynchronous

technical interviews as a design for supporting communication

during interviews, and discusses trade-offs and guidelines for im-

plementing this approach in software engineering hiring practices.

CCS CONCEPTS

· Software and its engineering; · Human-centered comput-

ing → Empirical studies in HCI;

KEYWORDS

technical interviews, asynchronous communication, skill evalua-

tion, software engineering

ACM Reference Format:

Mahnaz Behroozi, Chris Parnin, and Chris Brown. 2022. Asynchronous

Technical Interviews: Reducing the Effect of Supervised Think-Aloud on

Communication Ability. In Proceedings of the 30th ACM Joint European

Software Engineering Conference and Symposium on the Foundations of Soft-

ware Engineering (ESEC/FSE ’22), November 14ś18, 2022, Singapore, Singapore.

ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3540250.3549168

1 INTRODUCTION

A technical interview is a specialized form of job interview [2] where

software engineering candidates are tasked with writing code to

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9413-0/22/11.
https://doi.org/10.1145/3540250.3549168

solve programming problems while simultaneously performing

a think-aloud, or providing a vocal explanation of their problem-

solving approach to potential employers [35]. Think-aloud has a

major impact on software engineering hiring decisions. According

to tech consultant Scott Hanselman, interviewers often look for

łthoughtfulness, analysis, patience, calm, and humilityž in think-

aloud [25]. In addition, Refael Zikavashvili, co-founder and CEO of

Pramp1Ðan online platform for practicing technical interviewsÐ

describes the significance of think-aloud stating, łmore important

than the solution is how [candidates] work at getting the solu-

tion.ž Further, interview guides from companies like Google and

Microsoft expect candidates to łexplain [their] thought process and

decision making throughout the interviewž [24] and łbe prepared

to share...the rationale behind your decisionsž [36]. Thus, during

technical interviews, candidates are evaluated on their ability to

communicate their thought process, sometimes even moreso than

their coding skills [13].

Unfortunately, supervised think-aloud often has adverse and neg-

ative effects on problem-solving and communication ability [10, 51].

One interview candidate shared their struggle with think-aloud:

łThinking out loud ends up with me spending brain cycles on re-

flecting on how what I say must be registering with the interviewer

and in addition there’s a fear of recognizing that I’ve gone down the

wrong path and starting over...speaking takes more time [and] leads

to self-consciousnessž [12]. Another shared, łI made a few bugs I

would never have made if I were concentrating solely on codingÐ

honestly it’s so much harder for me to think aloud.ž [30]. Further,

supervised think-aloud allows for interruptions from interview-

ers, which can throw off candidates during their problem-solving

process. Consider the following example from tech blogger Jesse

Squires [43]: łI was familiar with the algorithm and could explain

how it works conceptually. After only a few lines, the interviewer

called out from behind me while comfortably sitting in his chair to

make a joke that ‘you must must be writing a lot of Swift’ because I

had accidentally omitted a few semicolons. That comment threwme

off for the rest of our time... the rest of the hour or so in that room

did not turn out well.ž Rather than gaining visibility into candidates’

thought processes and problem-solving strategies, supervised think-

aloud in technical interviews muddles and disturbs them. Instead

of having a conversation with an interviewerÐcandidates report

that it often feels like an interrogation.

Alternative formats for technical interviews exists. For example,

Behroozi et al. [10] demonstrated that in private interviewsÐwithout

supervised think-aloudÐparticipants reported feeling at ease, hav-

ing time to understand the problem and reflect on their solution.

As a result, technical problem-solving performance was improved

1https://www.pramp.com/

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

294

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3540250.3549168
https://doi.org/10.1145/3540250.3549168
https://www.pramp.com/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3540250.3549168&domain=pdf&date_stamp=2022-11-09

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Mahnaz Behroozi, Chris Parnin, and Chris Brown

(a) Asynchronous Technical Interviews (Screencast) (b) Public Whiteboard Interview Setting

Figure 1: (a) Solving a problem and recording their screen while thinking aloud. (b) Solving a problem in presence of an

experimenter while thinking aloud. (Note: These images are not taken from our actual experiment.)

nearly two-fold. While private interviews have considerable ad-

vantages for candidates, such as reducing stress and improving

technical problem-solving abilities, they lack the ability to foster

think-aloud while solving the problem, which eliminates valuable

information for interviewers in their evaluation of candidates. Fully

private interviews without think-aloud inhibit interviewers from

adequately evaluating potential employees, and thus have limited

value in the hiring processes.

In this paper, we evaluate asynchronous technical interviews,

where candidates submit audio and screencast recordings of them-

selves solving a technical interview coding problem and explaining

their approach throughout the process without the interviewer(s)

present (see Figure 1-a). This approach allows candidates to freely

decide when and how to communicate about their thought pro-

cess, while eliminating negative effects of supervision as achieved

with private interviews. To this end, we conducted a study where

we compare asynchronous technical interviews to synchronous

whiteboard interviews, or a traditional technical interview setting

with supervised think-aloud. The goal of our study is to understand

whether asynchronicity can enhance think-aloud quality, while

preserving technical performance.

To analyze asynchronous technical interviews, we evaluated can-

didates’ think-aloud and technical abilities through a retrospective

evaluation of recorded screencasts without live observation. We

found that communication ability and coding performance are both

improved by eliminating interviewers’ direct supervision, and the

clarity of think-aloud was significantly higher in asynchronously

recorded session compared to traditional whiteboard interviews,

while preserving technical solving performance. The contribution

of this work is to elucidate the effects of interviewers’ direct super-

vision on candidates’ thought process communication ability. The

implications of this work include several trade-offs to implement-

ing asynchronous technical interviews and guidelines for more

effective administrations of coding interviews.

2 METHODOLOGY

A technical interview is a hiring assessment that involves job-

seeking candidates completing think-alouds and expressing techni-

cal skills in front of potential employers. To understand the impact

of supervised think-aloud on technical interview performance, we

compare traditional technical interview environments (our control)

with asynchronous technical interviews (our treatment). In this

section, we describe our research questions, experimental settings,

and the data collected and analyzed to measure the differences of

participants’ communication and coding abilities in each setting.

2.1 Research Questions and Hypotheses

To understand the impact of asynchronicity in technical interviews,

we investigated the following research questions:

RQ1: What are the effects of asynchronous technical in-

terviews on think-aloud performance?

To observe candidates’ thought process during hiring evalua-

tions, interviewers ask them to think aloud while solving program-

ming problems. Think-aloud, as a communication skill, is essential

for evaluating candidates in technical interviews [13]. To inves-

tigate whether asynchronicity impacts the quality of candidates’

communication ability, we compared think-aloud informativeness

and stress indicators in asynchronous technical interviews against

traditional whiteboard interview settings with synchronous in-

terviewer supervision. We speculate that asynchronous technical

interviews are less stressful due to their ability to increase privacy

for candidates and eliminate direct supervision [10]. Thus, we hy-

pothesize that our approach will improve candidates’ think-aloud

quality and reduce stress in vocalizations.

RQ2: What are the effects of asynchronous technical in-

terviews on technical ability?

Technical interviews also incorporate coding tasks to evaluate

the programming skills and technical expertise of potential em-

ployees. We aim to discover if asynchronous technical interviews

can improve think-aloud ability without negatively impacting the

technical performance of candidates solving coding challenges. To

measure technical ability, we observed problem-solving strategies

identified as best practices for technical interviews and analyzed

code quality using standard industry hiring evaluation metrics,

namely correctness and optimality. We hypothesize that candidates

295

Asynchronous Technical Interviews: Reducing the Effect of Supervised Think-Aloud on Communication Ability ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

Table 1: Description of the Coding Problems

Question Description

Q1 (Valid Parentheses)

Given a string s containing just the characters ‘(’, ‘)’ , ‘{’ , ‘}’, ‘[’ and ‘]’, determine if the input string is valid.

An input string is valid if:

1- Open brackets must be closed by the same type of brackets.

2- Open brackets must be closed in the correct order.

Q2 (Jump)

Given an array of non-negative integers nums, you are initially positioned at the first index of the array.

Each element in the array represents your maximum jump length at that position.

Determine if you are able to reach the last index.

Q3 (Increasing Subsequece)

Given an integer array nums, return the length of the longest strictly increasing subsequence.

A subsequence is a sequence that can be derived from an array by deleting some or no elements without

changing the order of the remaining elements.

For example, [3,6,2,7] is a subsequence of the array [0,3,1,6,2,2,7].

Q4 (Rotate Array) Given an array, rotate the array to the right by k steps, where k is non-negative.

Q5 (Longest Substring) Given a string s, find the length of the longest substring without repeating characters.

will be able to maintain similar problem-solving strategies and pro-

duce comparable coding solutions to programming challenges in

asynchronous and synchronous technical interview settings.

2.2 Participants

We retrieved data for our control group from the public whiteboard

setting from Behroozi et al.’s study [10] analyzing public and private

technical interview environments. From their study, we considered

the audio and video recordings of 24 student participants who com-

pleted the technical interview task in the public setting. This sample

includes 19 male and 5 female subjects. To obtain participants for

our treatment group using asynchronous technical interviews, we

randomly sampled 24 participants enrolled in a graduate-level Soft-

ware Engineering course. Our treatment group sample consists of

submissions from 9 female and 15 male students.

All study participants in both experimental settings had knowl-

edge of Java and/or at least one other high-level programming

language. Prerequisite classes for the graduate Software Engineer-

ing course at the authors’ institution gave students the typical

knowledge required to complete technical interviews, including

constructing data structures, implementing search and sort algo-

rithms, and characterizing run time and space complexities. Fur-

thermore, graduate students represent potential technical interview

candidates, as many were actively engaged in software engineer-

ing internship and full-time job searches or had prior professional

experience. This study was approved by the local ethics board.

2.3 Tasks

In work by Behroozi et al. [10], tasks are selected in such a way that

it satisfies three main criteria: to be solvable within the time limit of

the experiment; to demonstrate sufficient difficulty such that cog-

nitive load can be induced while not being too trivial to solve; and

to have ecological validityÐthe task should reflect actual technical

interviews. In our evaluation, the study tasks selected maintain

the same criteria. Table 1 shows the coding questions used for our

interview tasks with descriptions of each problem. All of the tasks

utilized in our study can be found in łElements of Programming

Interviews in Javaž [2], a resource to help candidates prepare for

technical interview with practice programming challenges. These

questions are of a similar level of difficulty and represent a class of

problems related to string manipulation and usage of arrays, stacks,

or hash maps, which are fundamental Computer Science concepts

commonly tested during technical interviews [2]. Furthermore, the

problems contain a large solution space with multiple approaches,

including brute force and more sophisticated approaches with dif-

ferent complexities, as shown in Table 2.

2.4 Procedure

2.4.1 Asynchronous Technical Interviews. For our treatment group,

students were randomly assigned one of four coding problems in

Table 1 (Q1-Q4) via email. Of the 24 randomly sampled submissions,

nine subjects completed Q1, five completed Q2, six completed Q3,

and four completed Q4. Each problem statement included exam-

ple test cases, provided in Table 2, which indicated the expected

program output given certain input values. Students were asked

to provide a reasonable solution to their assigned task using pseu-

docode or a programming language of their choice on Collabedit,2

an online code editor with syntax highlighting but without a com-

piler to run the code. The assignment also stated that thought pro-

cess communication and correctness of the solution were the most

important criteria, while efficiency and syntax were secondary.

Students were required to record their screen and voice while

solving the problem (see Figure 1-a). However, participants were not

allowed to consult other resources to complete their task, including

but not limited to online resources, books, notes, and other people.

To limit preparation for the coding problem beforehand, students

signed up for a one-hour slot to perform their task, but they did not

know their coding problem ahead of time. This information was

emailed to them at the start of the time slot, and then students had

2http://collabedit.com/

296

http://collabedit.com/

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Mahnaz Behroozi, Chris Parnin, and Chris Brown

Table 2: Sample Solution Approaches, Time Complexities, and Test Cases for Coding Problem Tasks

Question Approaches’ Time Complexity Test Case 1 Test Case 2 Test Case 3 Test Case 4 Test Case 5 Test Case 6

Q1 Stack: 𝑂 (𝑛)
input: " "

Output: False

input: []

Output: True

input: }}

Output: False

input: }{

Output: False

input: (())

Output: True

input: ()([])

Output: True

Q2

Greedy: 𝑂 (𝑛)

Dynamic Programming: 𝑂 (𝑛2)

input : [2,3,1,1,4]

Output: true

Input: [3,2,1,0,4]

Output: false

Input: [2]

Output: true

Input: [0, 4, 8, 1, 17, 3]

Output: False

Input: [1, 1, 1, 1, 0, 1]

Output: False

Input: [5, 0, 0]

Output: True

Q3

Dynamic Programming

with Binary search: 𝑂 (𝑛𝑙𝑜𝑔𝑛)

Dynamic Programming: 𝑂 (𝑛2)

Recursive with memoization: 𝑂 (𝑛2)

Input: [10,9,2,5,3,7,101,18]

Output: 4

Input: [0,1,0,3,2,3]

Output: 4

Input: [7,7,7,7,7,7,7]

Output: 1

Input: [4,3,2]

Output: 1

Input: []

Output: 0

Q4 Brute Force: 𝑂 (𝑛)
Input: [1,2,3,4,5,6,7], 3

Output: [5,6,7,1,2,3,4]

Input: [1,2,3,4,5,6,7], 6

Output: [2,3,4,5,6,7,1]

Input: [-1,-100,3,99], 2

Output: [3,99, -1, -100]

input: [28], 3

Output: [28]

Input:[50,51,52,53], 121

Output: [53, 50, 51, 52]

Q5

Sliding Window: 𝑂 (𝑛)

Sliding Window Optimized: 𝑂 (𝑛)

Brute Force: 𝑂 (𝑛3)

Input: s = "abcabcbb"

Output: 3

Input: s = "bbbbb"

Output: 1

Input: s = "pwwkew"

Output: 3

to complete their coding assignment within one hour and upload

their recorded screencast; otherwise, the submission would not be

considered valid. All participants were able to complete their tasks

and upload their submissions within the allotted time slot.

2.4.2 Traditional Whiteboard Interviews. To investigate how su-

pervised think-aloud impacts communication ability, we compared

students’ submitted screencast recordings to data collected from

Behroozi et al.’s [10] public whiteboard setting. The whiteboard

setting resembled a traditional technical interview, where student

participants stood at a whiteboard to complete a programming

challenge (Q5) without knowledge of the problem beforehand, and

performed a supervised think-aloud in front of an observing re-

searcher (see Figure 1-b). Participants were similarly given sample

test cases, prohibited from using external resources, and permitted

to use any coding language. They had to complete the task within

a 30 minute time limit, and were encouraged to verbalize their

thought processes as if participating in a real job interview.

All participants who completed the technical interview task in

the public whiteboard setting within the given time limit were

included in this research experiment (𝑛 = 24). In each session,

participants’ voice andwork on the whiteboard were captured using

head-mounted mobile eye-tracking devices and made available to

the research team. In this study, we analyzed participant think-aloud

and technical abilities in recordings and compared them against the

data collected from our asynchronous technical interviews setting.

3 ANALYSIS

To test our hypotheses on the effects of asynchronicity on technical

interview proficiency, we collected data observing think-aloud and

technical performance of participants completing interview-related

tasks in asynchronous and synchronous interview settings.

3.1 Measuring Think-Aloud

To answer RQ1, we analyzed think-aloud by examining commu-

nication quality while also observing speech patterns to identify

possible sources of stress or cognitive load.

3.1.1 Quality. To evaluate think-aloud quality, we analyzed speech

pattern informativeness and evaluated thoughts vocalized in the

asynchronous and synchronous technical interview settings.

Informativeness. Think-aloud provides insight into candidates’

thought processes through communication between interviewees

and interviewers. Yet, not all vocalized thoughts associated with

problem-solving are worthy of communication, and verbalizing all

thoughts is not the same as communicating the thought process.

Furthermore, complex thought processes cause individuals to use

more filler words, or non-informative vocalizations, to seem less

stressed during uncertain pausing moments [1, 32].

To measure the informative parts of speech vocalized by par-

ticipants in each setting, we extracted non-filler words using the

Voice Activity Detector (VAD) module from Google’s open-source

WebRTC3 code to convert speech to text. VAD utilizes a Gaussian

Mixture Model (GMM) to detect human voice in the presence of

background noiseśsuch as keyboard typing or marker noise while

writing on a whiteboard. As the recordings contained relatively

long periods of silence, we also removed silent moments by con-

verting audio recordings in both settings into a 16 bit Pulse-code

modulation (PCM). We then sent 30-millisecond long frames using

a sliding window technique to VAD to filter out the frames that did

not contain human voice. Finally, we used the Google Web Speech

API4 to convert speech to text on each chunk in recordings.5

The GoogleWeb Speech API considers vocalizations such as ‘um’

and ‘uh’ as silence. We considered the following list as additional

common non-informative filler words: ‘so’, ‘huh’, ‘oh’, ‘okay’, ‘then’,

‘now’, ‘oops’, ‘yeah’, ‘yes’, ‘alright’, ‘sorry’, and ‘cool’. We filtered

filler words out of candidates’ thought process text to evaluate

their think-aloud. From the text generated for each participant, we

calculated participants’ non-filler words rate (𝑁𝐹𝑅𝑎𝑡𝑒) as:

𝑁𝐹𝑅𝑎𝑡𝑒 =

𝑁𝐹𝑡

𝑑
, (1)

3 https://webrtc.org/
4https://wicg.github.io/speech-api/
5The Python script and the generated texts from audio recordings can be found here:
https://rb.gy/iermrc

297

https://webrtc.org/
https://wicg.github.io/speech-api/
https://rb.gy/iermrc

Asynchronous Technical Interviews: Reducing the Effect of Supervised Think-Aloud on Communication Ability ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

where, 𝑁𝐹𝑡 is the total number of non-filler words, and 𝑑 is the

duration of the session in minutes.

Thought Vocalization. The ability for interviewees to clearly

vocalize their thought process and problem-solving approach plays

a major role in their technical interview performance, as companies

evaluate prospective employees on the technical competency of

coding solutions as well as their ability to communicate about it [20].

Indeed 6Ðan employment companyÐemphasizes the importance of

communication during technical interviews and note think-alouds

strongly factor into candidates getting a job offer [28].

To rate the thought vocalization of participants, two authors

acted as evaluators to retroactively analyze audio recordings from

both settings. A 5-point Likert scale ranking was implemented

to assess the effectiveness of participants’ think-aloud during their

interviewÐin the analysis, ratings of 4 or higher were considered ef-

fective, 3 or lower were considered ineffective. This scoring reflects

the typical binary feedback candidates often get while completing

technical interviewsÐhired or not hired. To evaluate participants’

think-aloud, we used criteria based on communication expecta-

tions during technical interviews from industry employers [21],

including engagement, or the confidence and articulateness in which

participants express their technical knowledge (i.e. how easy it was

to follow), and smoothness, or the clarity and consistency of their

think-aloud while solving the problem (i.e., avoiding long periods

of silence). Then, the two coders came together to discuss their

individual rankings and come to an agreement on the quality of

participants’ think-aloud.

3.1.2 Stress. Speech can be affected by stress, a psychological state

in response to task demand or fear [26]. To understand the impact

of the technical interview settings on speech, we analyzed speech

patterns, such as speech rate and the presence of stress cues.

Speech Rate. According to the National Center of Voice and

Speech (NCVS),7 the average conversation rate for English speak-

ers in the United States is approximately 150 words per minute.

However, stressful conditions have been shown to impact human

speech rate. For instance, stress can increase speech rate and word

productivity in humans [14]. On the other hand, humans may slow

their talking speed by adding pauses [23] or increasing usage of

filler words [32] during stress-inducing activities, such as public

speaking [53]. Research suggests secondary tasks, such as a techni-

cal interview problem-solving tasks, require attentional resources

that impact the spatiotemporality of vocal systems and can reduce

speech rate and fluency [3, 14, 17ś19, 49].

To evaluate speech rate, we used VAD to convert the think-aloud

verbalized by participants into text. We used these results to analyze

audio recordings of interviews and measure the overall speech rate

of participants in each setting, compiling the total number of words

(non-filler and filler) uttered during think-aloud divided by the total

duration of a particular session to complete the technical interview

task. We anticipate participants in the traditional whiteboard set-

ting will have discrepancies in rate of speech compared to those

completing asynchronous technical interviews.

Stress Cues. Research shows activities such as public speaking

induce anxiety in humans and impacts their speech [53]. The public

6https://www.indeed.com/
7http://www.ncvs.org/ncvs/tutorials/voiceprod/tutorial/quality.html

nature of supervised think-aloud has also been shown as a source of

stress, negatively impacting candidates’ communication ability and

technical performances [10]. Further, studies suggest stress cues

and speech can be perceived by listeners [22], which may impact

the reaction and synthesis of information acquired by the audience.

To measure stress cues in speech, we collected one-minute sam-

ples from the beginning, middle, and the end of each voice recording.

To avoid biased evaluations, the raters were blinded from the inter-

view condition and evaluated 144 generated one-minute voice sam-

ples that were randomized to prevent recognition of participants

and the setting. Two authors of this paper independently evaluated

the extent of stress in participants’ voice using a 5-point Likert

scale (1 being Not at All Stressed and 5 being Extremely Stressed).

Then, they reported voice features that influenced their perception

of participants’ stress during think-aloud. The common features

taken into consideration were: shortness of breath, mouth dryness,

shaky voice, faster or slower than normal rate of talking, higher or

lower than normal voice pitch, and usage of non-informative filler

words. We categorized participants with Likert rankings of three

or less łnot stressedž and rankings of four or five as łstressedž.

3.2 Measuring Technical Performance

To answer RQ2, we observed technical aspects of interviews includ-

ing problem-solving strategies and solutions’ code quality.

3.2.1 Problem-Solving Strategies. To study problem-solving strate-

gies, we analyzed participants’ adoption of beneficial technical

interview activities before and after programming. These best prac-

tices were derived from hiring teams, programming blogs, and

resources to help users prepare for interviews.

Defining Approach before Coding. This strategy refers to

technical interview candidates outlining their approach to solving

a programming challenge question before starting to write code.

During technical interviews, planning and explaining the approach

to solve a coding problem before starting to code provides benefits

for participants. For example, freeCodeCamp recommends intervie-

wees should łcommunicate your approach to the interviewer even

before you start to codež [45] to validate the approach with hiring

managers, FullStack Academy notes describing approaches before

coding provides insight into your thought process and increases

understanding for interviewers [52], and Scaler suggests large tech

companies like Google, Amazon, and Facebook are looking for can-

didates with łthe patience and intellect to analyze the problem at

hand thoroughly before jumping into providing a solutionž [42].

To analyze this in our study, we observed recordings to deter-

mine whether participants clearly explained their approach before

starting the problem-solving process with code or pseudocode in

each setting. We investigated participant recordings to analyze

their think-aloud and determine when they began to write code for

their assigned problem. Participants who provided a preliminary

algorithm to approach the problem before starting to write the

program, even if their algorithm changed during the actual coding,

were indicated to have adopted this problem-solving strategy.

Checking Code against Test Cases. After completing the

code for technical interview programming questions, resources

indicate interviewees should test their solution to validate their

approach. In general, testing is vital for ensuring software works

298

https://www.indeed.com/
http://www.ncvs.org/ncvs/tutorials/voiceprod/tutorial/quality.html

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Mahnaz Behroozi, Chris Parnin, and Chris Brown

correctly [50]. Testing is also an important step for validating solu-

tions during in technical interviews. For example, Tech Interview

Coach and Google Software Engineer Anthony D. Mays argues test-

ing is something interviewees should łalwaysž and łabsolutely need

to dož during technical interviews [34]. Similarly, Ibrahim IrfanÐa

former developer at Google and Facebook and co-founder of the

Superpowered app8Ðemphasizes the importance of testing your

code during interviews stating, łThe biggest piece of advice I can

give you here is to test your code, not your algorithm. Go through

the exact code you wrote down. This is especially important in

whiteboard interviews where you can’t run your codež [29].

To explore the impact of interview settings on participants’ test-

ing their solution against test cases, we manually analyzed inter-

view recordings to observe whether subjects tested their solution

with at least one of the provided test cases after completing an ini-

tial solution to the programming question. Those that went through

an input and produced an output value to verify their approach

after completing a solution were regarded as implementing this

technical interview problem-solving strategy, regardless of whether

or not their solution was correct.

3.2.2 Code Quality. To evaluate code quality, we used industry

standards for evaluating candidates. Specifically, we measured the

correctness and complexity of participants’ solution to ensure asyn-

chronous technical interviews sustain technical performance.

Correctness. We evaluated participant code solutions in each

setting with the specific test cases provided to participants. Table 2

summarizes the coding questions along with the test cases used

to evaluate solutions. The screencast participant solutions were

evaluated on test cases based on their randomly assigned question

fromQ1-Q4, while thewhiteboard participants fromBehroozi et al.’s

study were evaluated against Q5 (see Table 1). To analyze program

correctness, we manually translated all of the solutions from each

setting into program code, filling in incomplete or incorrect syntax

when necessary. Then, we executed the programs with the given

input values to determine if the output of the code matched the

expected output of the test cases provided. We scored participants

in each setting based on the percentage of test cases passed out

of the total number of test cases to indicate how well completed

solutions met the requirements of the original problem.

Optimality. Although we did not require an optimal solution,

we did examine the programs submitted by participants in each set-

ting to determine their performance based on runtime complexity,

or the amount of computer time necessary to run an algorithm. For

example, a program using two nested for loops iterating through

each value in an array would have an 𝑂 (𝑛2) runtime complexity.

The runtime complexities for potential solutions to the program-

ming questions participants completed for the study are available

in Table 2. To analyze the complexity of solutions, we converted so-

lutions provided by participants into executable code and analyzed

the time complexity of programs by observing the data structures

and algorithms utilized. In general, employers expect efficient code

with low complexity during technical interviews [35]. Thus, we

evaluate optimality as a metric to determine the number of partici-

pants who provided the most optimal solution in each setting.

8https://superpowered.me/

4 RESULTS

4.1 Impact on Think-Aloud

4.1.1 Communication Quality.

Informativeness. We found participants in the traditional white-

board interview setting were much less articulate based on higher

usage of non-informative words in their vocalizations. Using the

informativeness formula in Equation 1, which calculates the rate of

non-formative words, we found the average rate of informativeness

was 63.73 for whiteboard participants compared to 75.54 for partic-

ipants in the screencast setting. This indicates that candidates in

the asynchronous setting uttered less filler words and their speech

contained more substantial statements. Further, a MannśWhitney U

test found the difference between the rate of non-filler words usage

per minute to be significant between the two interview settings

(𝑈=203.0, 𝑝=0.041, 𝑑=0.647), as presented in Figure 2. Thus, we con-

clude the overall informativeness of participants’ think-aloud was

higher in asynchronous technical interviews than in the traditional

whiteboard interview setting.

Figure 2: Non-filler words rate in synchronous (whiteboard)

and asynchronous (screencast) interview settings

Thought Vocalization. Participants in the asynchronous setting

were more often rated as effective, 83% (𝑛 = 20) compared with 54%

(𝑛 = 13). Furthermore, approximately 88% (𝑛 = 21) of asynchro-

nous technical interviews think-aloud sessions were categorized as

engaging and 79% (𝑛 = 19) walked through their process smoothly.

However, of the whiteboard participant thought vocalizations, only

58% (𝑛 = 14) were considered engaging and 67% (𝑛 = 16) smooth.

The differences in effectiveness ratings were significantly different

(𝜒2 = 4.75, 𝑝 = 0.0292). Overall, we find that asynchronous inter-

view participants communicated their thoughts significantly more

effectively than those in the traditional whiteboard setting.

4.1.2 Stress.

Speech Rate. Generally, participants in the whiteboard setting

used fewer words and a slower speech rate to communicate com-

pared to those using screencast recordings. We found the speech

rate of asynchronous participants was approximately 81.00 words

299

https://superpowered.me/

Asynchronous Technical Interviews: Reducing the Effect of Supervised Think-Aloud on Communication Ability ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

per minute compared to 69.40 for whiteboard participants, indicat-

ing increased pauses and cognitive load. We also found the talking

rate of participants was significantly slower in the whiteboard set-

ting (𝑈=204.0, 𝑝=0.043, 𝑑=0.615). In whiteboard settings, not only

is information being transformed at a slower rate, this slower rate

is consistent with higher cognitive load and stress levels.

Stress Cues. We found 86.36% (𝑛 = 19) of the 22 one-minute sam-

ples labeled as stressed were from participants in the whiteboard

setting. Further, we observed that 25% (𝑛 = 6) of participants in

the whiteboard setting were categorized as stressed in their overall

think-aloud, while none of the screencast participants were con-

sidered to exude stress cues in their thought process vocalizations.

The difference of perceived stress from voice was statistically signif-

icant between the settings (𝜒2 = 6.857, 𝑝 = 0.0088), indicating that

supervised think-aloud during technical interviews had a major

impact on communication ability and perceivable stress levels.

4.2 Impact on Technical Performance

4.2.1 Problem-Solving Strategies.

Defining Approach before Coding. We observed 42% (𝑛 = 10) of

the screencast participants explained their approach before starting

to code, while only 25% (𝑛 = 6) did so in the whiteboard setting.

This indicates, on average, participants completing the technical

interviews with private screencasts were able to plan and describe

their approach more effectively. While we observed a large effect

size, using a chi-squared we found no statistical difference between

students defining their approach in the screencast and whiteboard

settings (𝜒2 = 1.5, 𝑝 = 0.220671).

Checking Code against Test Cases. Overall, we found 50% (𝑛 = 12)

of screencast participants tested their solutions against the provided

input to validate the correctness of their solution to technical inter-

view problems. However, only five out of the 24 participants (21%)

did so in the public whiteboard setting. These results also show

that the number of participants who checked their solution was

significantly higher in the screencast setting compared to the white-

board setting (𝜒2 = 4.463, 𝑝 = 0.034637). Thus, interviewees in this

setting may be more likely to evaluate their solution against test

cases, contributing to higher success rates for participants solving

programming questions in this environment.

4.2.2 Code Quality.

Correctness. Participants in the whiteboard interview setting

received significantly lower scores on their solutions. On average,

participants in the whiteboard setting covered 52.7%±43% of the

test cases, while the asynchronous technical interview participants

passed 79.4%±24.3%. Table 3 presents the scoring rate of test cases

passed for participants in the asynchronous and synchronous tech-

nical interview settings. A MannśWhitney U test showed the differ-

ence to be significant (𝑈=197.5, 𝑝=0.025, 𝑑=0.748). It is also notable

that none of the participants in the asynchronous technical inter-

views setting failed all of the provided test cases for their task, while

29% of participants in the traditional whiteboard setting failed to

pass a single test case for their problem. To that end, we believe

asynchronous technical interviews actually improved technical

skills for participants without the presence of an interviewer.

Optimality. We found that 75% (𝑛 = 18) of the screencast par-

ticipants provided the most optimal algorithm for solving the as-

signed coding question. Comparatively, only 13% (𝑛 = 3) of par-

ticipants in the traditional whiteboard interview setting provided

the most optimal solution, with the majority of the synchronous

interview participants submitting a sub-optimal or invalid solution

to the programming problem. The task performance results for

optimality of coding solutions for all participants can be seen in Ta-

ble 3. The difference in solution complexity between asynchronous

and synchronous interview participants is statistically significant

(𝜒2 = 19.40476, 𝑝 < 0.0001).

5 LIMITATIONS

The primary goal of the study was to evaluate the impact of an

intervention on think-aloud. However, there are also several threats

to validity that must be considered when interpreting results.

5.1 Construct Validity

Human perception in evaluating think-aloud quality and stress

cues can be limited and biased. We mitigated bias by sampling from

different parts of sessions, shuffling the voice samples, using inde-

pendent rating, and choosing raters from differing genders (male

and female). Furthermore, while human perception is limited in

making these judgements, in practice, these limitations are mirrored

by real interviewers who also use human judgement in evaluating

candidate’s performance. While our task performance measures

were drawn from industry settings, our criteria for rating may dif-

fer from how raters across different companies may interpret and

apply interview criteria [21].

5.2 Internal Validity

The procedure we used to study think-aloud may influence what

conclusions we can draw. Our interview settings may have under-

estimated the amount of pressure candidates face when performing

a high-stakes problem-solving task. For example, real whiteboard

technical interviews might even have higher stress and lower com-

munication efficacy in practice. In addition, the different nature of

the interview settings limits direct comparison on certain measures.

For example, the coding problems may have had different levels of

difficulty, thus limiting our ability to draw conclusions based on

measures such as time or correctness. To address this limitation,

we selected other task performance metrics that would generalize

across problems, such as using deliberate strategies and test case

verification. As a result, we made an explicit trade-off to focus on

observing communication ability in a variety of settings at the cost

of having a limited ability to compare task performance.

5.3 External Validity

We have only examined this impact in the context of a limited set of

coding challenges from participants at one university. While many

students participate in technical interviews, they may not repre-

sent other developers on the job market [41], who may perform

differently in interview settings. Moreover, the measurements of

stress related to speech are biased against a variety of participant

backgrounds, and we acknowledge our efforts are primarily based

on a Western and neurotypical perspective. To mitigate this, we

300

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Mahnaz Behroozi, Chris Parnin, and Chris Brown

Table 3: Participants and Performance

Screen Cast Whiteboard

ID Gender Question Score Complexity ID Gender Score Complexity

P46 F Q1 1.00 𝑂 (𝑛) P22 M 1.00 𝑂 (𝑛)

P47 M Q1 1.00 𝑂 (𝑛) P25 M 1.00 𝑂 (𝑛)

P48 M Q1 1.00 𝑂 (𝑛) P31 M 1.00 𝑂 (𝑛)

P65 F Q1 1.00 𝑂 (𝑛) P24 M 1.00 𝑂 (𝑛2)

P55 M Q2 1.00 𝑂 (𝑛) P33 M 1.00 𝑂 (𝑛2)

P56 F Q2 1.00 𝑂 (𝑛) P34 M 1.00 𝑂 (𝑛2)

P67 F Q2 1.00 𝑂 (𝑛) P40 M 1.00 𝑂 (𝑛2)

P68 F Q2 1.00 𝑂 (𝑛) P41 M 1.00 𝑂 (𝑛2)

P53 F Q3 1.00 𝑂 (𝑛2) P45 M 1.00 𝑂 (𝑛2)

P51 M Q4 1.00 𝑂 (𝑛) P39 M 1.00 𝑂 (𝑛3)

P63 M Q4 1.00 𝑂 (𝑛) P23 M 0.67 −

P69 M Q4 1.00 𝑂 (𝑛) P32 M 0.33 −

P52 M Q1 0.83 𝑂 (𝑛) P42 F 0.33 −

P61 M Q1 0.83 𝑂 (𝑛) P26 M 0.33 −

P59 F Q3 0.80 𝑂 (𝑛2) P30 F 0.33 −

P49 M Q2 0.67 𝑂 (𝑛2) P36 M 0.33 −

P54 M Q3 0.60 𝑂 (𝑛𝑙𝑜𝑔𝑛) P38 M 0.33 −

P57 M Q3 0.60 𝑂 (𝑛2) P27 M 0.00 −

P58 F Q3 0.60 𝑂 (𝑛2) P28 M 0.00 −

P66 F Q3 0.60 𝑂 (𝑛) P29 F 0.00 −

P60 M Q1 0.50 𝑂 (𝑛) P35 M 0.00 −

P62 M Q1 0.50 𝑂 (𝑛) P37 M 0.00 −

P50 M Q1 0.33 𝑂 (𝑛) P43 F 0.00 −

P64 M Q4 0.20 𝑂 (𝑛) P44 F 0.00 −

Score and complexity of solutions for participants in each settings. In the score column, black

indicates passed test cases while red indicates a failed test.

attempted to recruit a diverse sample of participants and a diverse

team of evaluators. However, our results may not generalize to

all candidates completing technical interviews. For future work, a

larger collection of studies, including participation from industry

professionals and active software engineering job seekers, would

be valuable in establishing the generalizability of these results.

6 DISCUSSION

Our findings demonstrate that asynchronous technical interviews

have considerable advantages for candidates, including improv-

ing their think-aloud quality (Section 4.1.1) and reducing stress

(Section 4.1.2), allowing more accurate communication about their

problem-solving abilities. Further, we found asynchronicity im-

proved technical performance by helping candidates adopt better

problem-solving strategies (section 4.2.1) and produce more correct

and optimal programming solutions (section 4.2.2). These results

are consistent with findings by Behroozi et al. [6, 10], who show

that privacy benefits candidates’ performance. In contrast to pri-

vate interviews, we believe this approach can enhance technical

interview processes by allowing employers to have a more accurate

evaluation of candidates’ thought processes and coding abilities.

However, we recognize naively incorporating asynchronous

technical interviews into current software engineering hiring pro-

cesses is not feasible without further consideration. For instance,

contemplating potential communication and ethical concerns as

well as other trade-offs to implementing this approach in industry.

To that end, we aim to provide guidelines for improving think-

aloud quality and while preserving technical performance during

technical interviews based on our results.

6.1 Communication Trade-offs

To navigate the tension between facilitating candidate privacy and

asynchronicity in our approach while maintaining the necessary

interviewer-interviewee interactions during technical interviews,

we discuss trade-offs and offer tactics for incorporating these con-

cepts into the communication and technical aspects of software

engineering hiring processes.

6.1.1 Follow-up Questions. One potential concern with removing

synchronous communication during technical interviews is the

loss of dialogue between interviewers and interviewees. In asyn-

chronous technical interviews, candidates submit recordings of

problem-solving sessions to be retroactively reviewed by potential

employers. While this significantly improves communication and

technical aspects of candidates’ interview performance, this ap-

proach critically removes the opportunity for the interviewer to ask

prospective employees follow-up questions during interviews, such

as asking about alternative approaches or discussing the motivation

behind a particular design decision.

301

Asynchronous Technical Interviews: Reducing the Effect of Supervised Think-Aloud on Communication Ability ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

Guidelines. Our results show that asynchronicity enhanced can-

didates’ communication ability by significantly increasing infor-

mativeness and effectiveness while reducing stress. However, ad-

ditional modifications to asynchronous technical interviews can

accommodate further dialogue to gain increased insight into candi-

dates’ problem-solving approaches. For example, when reviewing

a recording, interviewers can add comments or questions at spe-

cific points in the video, which can then be clarified by the author

retroactively. Another approach might involve providing additional

guidelines to candidates up front with the coding problem about

what should be discussed, such as identifying deficiencies with

solution or describing alternative approaches. These guidelines

could even be interspersed, such that the candidate must submit

the recording first, and then submit a second recording that includes

answers to the follow-up questions.

6.1.2 Soft Skills and Company Evaluations. Further, the asynchro-

nous nature of our approach prevents interviewers from evaluating

candidates’ soft skills, or non-technical and interpersonal abilities

of potential employees in particular contexts [27], which are crucial

for software engineering work [33]. For example, in asynchronous

technical interviews employers are unable to inquire to learn more

about interviewees’ background, experiences, personality, and char-

acter to determine their fit for the role. From candidates’ perspec-

tives, asynchronous technical interviews prohibits interviewees

from asking questions to interviewers to evaluate company culture

and expected responsibilities for roles. Similar to how employers

evaluate the soft skills of candidates to determine their fit for de-

velopment teams, these conversations also play a vital role for job

seekers to make decisions about culture fit if offered a position.

Guidelines. To incorporate soft skills and company evaluations

with asynchronous technical interviews, we suggest employers

vary interview types throughout the software engineering hir-

ing pipeline. Think-aloud is often used to gauge candidates’ abil-

ity to clearly communicate and perform a problem-solving walk-

through [21]Ðhowever, this is often wrongly conflated with evalu-

ating soft skills. Instead, we argue that an asynchronous approach

would allow for assessment of a problem-solving walk-through

while separate traditional behavioral interviews or high-level de-

sign questions would be more appropriate for assessing soft skills

and team fit. For example, at Netflix, some interviewers incorporate

a short technical presentation on any topic as part of the interview

process. Further, separate sessions could be used for candidates

to learn about the culture of organizations and expectations for

roles. Thus, by including various types of interview formats in a

hiring pipeline, a more complete, accurate, and fair assessment of

candidates can be obtained.

6.2 Ethical Trade-offs

Incorporating privacy and asynchronicity into technical interview

processes could also introduce ethical dilemmas. We introduce

several moral predicaments for both employers and candidates,

and provide guidelines to prevent dishonesty and corruption from

implementing asynchronous technical interviews in software engi-

neering hiring processes.

6.2.1 Cheating. One complication of integrating asynchronicity

into technical interviews is the potential for candidates to cheat.

We found that removing evaluator presence significantly improved

candidates’ technical performanceÐleading participants to produce

more precise and optimal code. However, without synchronous in-

terviewer supervision it would be difficult to prevent interviewees

from potentially looking up answers or using external resources

while solving programming challenges. Cheating ultimately in-

hibits employers from getting an accurate evaluation of candidates’

knowledge, skills, and abilities to make hiring decisions.

Guidelines. To prevent cheating in asynchronous technical in-

terviews, we suggest formatting hiring evaluations to better reflect

realistic job settings. For instance, one software engineer declares

łI have a confession to make. I cheat at my job. I cheat all day, every

day...I found this website called Stack Overflow that has so many

answers to problems I run in to. Sometimes I’ll just copy the code

directly from the site, without typing it out again myself! Some-

times I even just walk up to colleagues and straight up ask them

for help with a problemž [40]. With screencast recordings, employ-

ers have the ability to view all resources utilized by interviewees

during coding tasks, in addition to observing their problem-solving

abilities. Thus, we posit incorporating actual software engineering

affordances into technical interviews, including permitting the use

of external resources, can mitigate the impact of cheating in tech-

nical interviews and enhance how candidates are evaluated and

assessed for software engineering positions.

6.2.2 Invasion of Privacy. Another ethical trade-off for asynchro-

nous technical interviews is, despite the increase in privacy for

candidates, an invasion of candidate privacy by employers. For

instance, with recent shifts to online education, online proctoring

systems such as Proctorio9 have been employed to prevent cheating

by monitoring students completing work remotely and without

in-person supervision from teachers. However, users frequently

question the legality of Proctorio and claim the system violates

privacy rights with features such as browser locking and webcam

accessÐleading to outcries from students, instructors, and privacy

advocacy groups [4]. Similar practices have been implemented in

software engineering hiring processes. For example, Amazon has

used ProctorU,10 another online proctoring platform, during on-

line job assessments to gain access to interviewees’ microphone,

mouse, webcam, and browser to obstruct online activity, shut down

running applications, block screenshots, and track head, eye, and

mouth movements [31]. One candidate blogged about their Amazon

software development engineer interview experience, noting łthe

normalization of privacy violation has never felt more realž [39].

Guidelines. Our recommendation is that employers balance their

needs to verify and observe a candidate’s knowledge and skills

without overreaching. One way forward is to build in trust into the

process. For instance, some companies have transitioned to using

łmini-workdayž interviews, where candidates are given a scoped

project that can be accomplished within a given period of time for

submission.While these łday in the lifež evaluations eliminate think-

aloud, they give candidates a sense of common tasks in the target

9https://proctorio.com/
10https://www.proctoru.com/

302

https://proctorio.com/
https://www.proctoru.com/

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Mahnaz Behroozi, Chris Parnin, and Chris Brown

role and provide employers with a chance to see how the candidate

would perform and if they are a good fit for the position [46].

Another way to allow for interactions without the pressure of

direct supervision is by incorporating collaboration in interviews

through processes such as pair programming, where candidates and

employers work together to complete programming challenge. Pair

programming is a common industry practice that provides many

benefits to development teams [11], and may also give a better

assessment of candidates’ communication and technical abilities

while providing an idea of how they work in team environments.

6.3 Other Considerations

6.3.1 Time Commitment. Finding qualified candidates is a sub-

stantial investment, and hidden costs spent on interviewing and

evaluating candidates quickly add up [16]. In communications with

CoderPad,11 a popular online platform for live coding interviews, a

common concern with interviewers across companies is the raw

time they have to spend with candidates is highly disruptive to the

workweekÐan engineer can be involved in as many as 3ś7 inter-

views a week. Likewise, for candidates the amount of practice, and

sheer number of interviews they must undergo can involve many

months of workÐleading to biased assessments and frustration for

software engineers on the job market [8]. Overall, the traditional in-

terview process requires huge time commitments from both parties,

while yielding a low placement rate.

Guidelines. Asynchronous technical interviews offer a unique op-

portunity to reduce effort and time involved in technical interviews.

If support for asynchronous technical interviews is integrated into

online platforms, such as CoderPad, then several opportunities for

automation and time-saving could be gained. First, automated test-

ing of code could filter out low-performing candidates, allowing

for manual effort to be focused on more promising candidates. Sec-

ond, automated annotation of the recording (e.g., marking audio

hotspots) could guide interviewers to salient parts of the interview

to review or revisit. Finally, for candidates, a few recorded asyn-

chronous technical interviews in a centralized platform could be

used to apply to multiple positions rather than performing each

interview manually. Thus, a candidate would be able to maintain a

live portfolio of their problem-solving process rather than having

to demonstrate these endlessly per interview.

6.3.2 Relationship to Other Assessments. Finally, it is worth consid-

ering how asynchronous technical interviews fit in relationship to

other common interview formats. In addition to traditional white-

board interviews, other hiring assessment formats such take-home

tests and coding quizzes also exist.

The closest assessments to asynchronous technical interviews

are take-home tests, with a few critical differences. In a take-home

test, a coding problem is assigned to a candidate to be completed

within a certain time frame, and then returned to the interviewer

by a deadline [46]. For example, in a recent take-home test provided

by GitHub, a candidate was asked to implement a basic REST API

for data storage and create a well-formatted pull request within 5

11https://coderpad.io/

hours of starting the taskÐthe amount of time allocated was not ad-

vertised ahead of time. Similarly, AutoIterative12 offers take-home

tests where candidates have two weeks to develop a feature in a

production environment, correct against edge cases, and optimize

their solution and performance score. Take-home tests are often

lauded for their realistic task settings, and companies implementing

similar practices are praised for łhiring without whiteboardsž [44];

however, common complaints from candidates include the longer

time commitment required [48], and interviewers are unable to as-

sess communication skills via think-aloud. Further, quizzes remove

interactions between interviewers and interviewees while assessing

candidates’ knowledge and abilities in unrealistic software engi-

neering environments. Asynchronous technical interviews offer a

mechanism for candidates to demonstrate their problem-solving

and communication skills within a shorter time period.

7 RELATED WORK

The work by Behroozi et al. [6, 7, 10] is the closest related work

in terms of research goals and methodology. Using head-mounted

eye trackers, Behroozi and colleagues conducted a controlled study

with 48 participants split into two groups, with one group solving

one problem on whiteboard attended by a proctor, and another

group solving the same problem without a proctor in a private

room. The results showed that participants in the private interview

had lower cognitive load, lower stress levels, and achieved more

optimal solutions and higher problem-solving scores. Our work

complements this research by comparing another interview format

and considers other criteria essential in a technical interview. An-

other closely related paper [37] also examined speech and other

features, such as facial expressions, during interviews. However,

their work was done in the context of predicting candidate per-

formance in behavioral interviews, whereas our work focuses on

understanding how the interview setting influences performance.

Other researchers have studied technical interviewsmore broadly.

Matturro et al. [33] reported 30 skills essential to software engineer-

ing positions. According to them, the top-five soft skills are: commu-

nication skills, teamwork, analytical and problem-solving skills, orga-

nizational skills, and interpersonal skills. Ford and colleagues [21]

conducted a study from the perspective of hiring managers and

university students participating in mock technical interviews. The

study identified a mismatch between candidates’ expectations of

what interviewers assess and what they actually look for in a candi-

date. Behroozi and colleagues [8] conducted a qualitative study on

comments posted on Hacker News,13 a social network for software

practitioners, to derive concerns about hiring processes. In a closely

related study, they investigated software engineering candidates’

experiences in the hiring pipeline through qualitative analysis of

posts on Glassdoor14Ða job review website [9]. Their findings pin-

point poor practices in the hiring processes of software companies.

Researchers have also investigated challenges faced by disadvan-

taged and low-resource job seekers [5, 38], the effectiveness of

resources such as online career mentoring [47], and alternative job

seeking interventions, such as speed dating [15].

12https://autoiterative.com/
13https://news.ycombinator.com/
14https://www.glassdoor.com/

303

https://coderpad.io/
https://autoiterative.com/
https://news.ycombinator.com/
https://www.glassdoor.com/

Asynchronous Technical Interviews: Reducing the Effect of Supervised Think-Aloud on Communication Ability ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore

8 CONCLUSION

Supervised think-aloud in technical interviews unnaturally syn-

chronizes problem-solving with communication. The result is a

forced and stressful interaction where less information is conveyed

and with more harm inflicted on technical solving ability. Our paper

describes an alternative method for evaluating the communication

ability of a candidate in a technical interviewÐasynchronous tech-

nical interviews. Our results show that an asynchronous interview

setting has considerable advantages for candidates, including im-

proving their think-aloud quality, reducing stress, and allowing

a more accurate assessment of their coding and problem-solving

abilities. To that end, we posit several trade-offs and guidelines for

incorporating asychronicity in technical interviews.

REFERENCES
[1] Arman Atoofi and Hammad M Sadiq. 2018. An Investigation of Linguistic Com-

plexity by Sex and Minority Status Under Stress. (2018).
[2] Adnan Aziz, Tsung-Hsein Lee, and Amit Prakash. 2015. Elements of Programming

Interviews in Java: The Insiders’ Guide (2 ed.).
[3] Dallin J Bailey and Christopher Dromey. 2015. Bidirectional interference between

speech and nonspeech tasks in younger, middle-aged, and older adults. Journal
of Speech, Language, and Hearing Research 58, 6 (2015), 1637ś1653.

[4] David G. Balash, Dongkun Kim, Darika Shaibekova, Rahel A. Fainchtein, Micah
Sherr, and Adam J. Aviv. 2021. Examining the Examiners: Students’ Privacy
and Security Perceptions of Online Proctoring Services. In Seventeenth Sympo-
sium on Usable Privacy and Security (SOUPS 2021). USENIX Association, 633ś652.
https://www.usenix.org/conference/soups2021/presentation/balash

[5] Colin Barnes. 2000. A working social model? Disability, work and disabil-
ity politics in the 21st century. Critical Social Policy 20, 4 (2000), 441ś457.
https://doi.org/10.1177/026101830002000402

[6] Mahnaz Behroozi, Alison Lui, Ian Moore, Denae Ford, and Chris Parnin. 2018.
Dazed: Measuring the cognitive load of solving technical interview problems at
the whiteboard. In International Conference on Software Engineering: New Ideas
and Emerging Technologies Results (ICSE NIER). 93ś96. https://doi.org/10.1145/
3183399.3183415

[7] Mahnaz Behroozi and Chris Parnin. 2018. Can we predict stressful technical
interview settings through eye-tracking?. In Proceedings of the Workshop on Eye
Movements in Programming. 1ś5.

[8] Mahnaz Behroozi, Chris Parnin, and Titus Barik. 2019. Hiring is broken: What do
developers say about technical interviews?. In Visual Languages & Human-Centric
Computing (VL/HCC). 1ś9. https://doi.org/10.1109/VLHCC.2019.8818836

[9] Mahnaz Behroozi, Shivani Shirolkar, Titus Barik, and Chris Parnin. 2020. Debug-
ging hiring: What went right and what went wrong in the technical interview
process. In International Conference on Software Engineering: Software Engineering
in Society (ICSE SEIS). https://doi.org/10.1145/3377815.3381372

[10] Mahnaz Behroozi, Shivani Shirolkar, Titus Barik, and Chris Parnin. 2020. Does
stress impact technical interview performance?. In Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 481ś492.

[11] Tanja Bipp, Andreas Lepper, and Doris Schmedding. 2008. Pair programming in
software development teamsśAn empirical study of its benefits. Information and
Software Technology 50, 3 (2008), 231ś240.

[12] Bjorn. 2016. Is thinking out loud during an interview really the best strat-
egy? https://softwareengineering.stackexchange.com/questions/102381/is-
thinking-out-loud-during-an-interview-really-the-best-strategy.

[13] Laurence Bradford. 2020. Technical Interviewing 101: Ultimate Guide to Ac-
ing Your Tech Interview in 2021. https://learntocodewith.me/posts/technical-
interview/.

[14] Tony W Buchanan, Jacqueline S Laures-Gore, and Melissa C Duff. 2014. Acute
stress reduces speech fluency. Biological psychology 97 (2014), 60ś66.

[15] Tawanna R. Dillahunt, Jason Lam, Alex Lu, and Earnest Wheeler. 2018. Designing
future employment applications for underserved job seekers: A Speed Dating
Study. In Designing Interactive Systems (DIS). 33ś44. https://doi.org/10.1145/
3196709.3196770

[16] Nathan Doctor. 2016. The hidden cost of hiring software engineersÐ
$22,750/hire. https://www.qualified.io/blog/posts/the-hidden-cost-of-hiring-
software-engineers.

[17] Christopher Dromey and Emily Bates. 2005. Speech interactions with linguistic,
cognitive, and visuomotor tasks. (2005).

[18] Christopher Dromey and April Benson. 2003. Effects of concurrent motor, lin-
guistic, or cognitive tasks on speech motor performance. (2003).

[19] Christopher Dromey and Erin Shim. 2008. The effects of divided attention on
speech motor, verbal fluency, and manual task performance. Journal of Speech,
Language, and Hearing Research (2008).

[20] Denae Ford, Titus , Leslie Rand-Pickett, and Chris Parnin. 2017. The Tech-talk
balance: What Technical Interviewers Expect from Technical Candidates. In In-
ternational Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE). 43ś48. https://doi.org/10.1109/CHASE.2017.8

[21] Denae Ford, Titus Barik, Leslie Rand-Pickett, and Chris Parnin. 2017. The Tech-
Talk Balance: What Technical Interviewers Expect from Technical Candidates. In
2017 IEEE/ACM 10th International Workshop on Cooperative and Human Aspects
of Software Engineering (CHASE). 43ś48. https://doi.org/10.1109/CHASE.2017.8

[22] Dennis B Fry. 1958. Experiments in the perception of stress. Language and speech
1, 2 (1958), 126ś152.

[23] Elisabeth Gareis. 2006. Guidelines for public speaking. Department of Communi-
cation Studies, Baruch College/CUNY, New York (2006).

[24] Cengiz Gunay. 2019. Google Interview Prep Guide Software Engineer - Uni-
versity Graduate. https://soft-eng-practicum.github.io/assets/pdfs/Google%
20Interview%20Prep%20Guide%20SWE%20.pdf.

[25] Scott Hanselman. 2014. How do you deal with anxiety when Live Coding in
Technical Interviews? http://www.hanselman.com/blog/how-do-you-deal-with-
anxiety-when-live-coding-in-technical-interviews.

[26] John HL Hansen and Sanjay Patil. 2007. Speech under stress: Analysis, modeling
and recognition. In Speaker classification I. Springer, 108ś137.

[27] Scott A Hurrell, Dora Scholarios, and Paul Thompson. 2013. More than a ‘humpty
dumpty’term: Strengthening the conceptualization of soft skills. Economic and
Industrial Democracy 34, 1 (2013), 161ś182.

[28] Indeed. 2020. How to Prepare for a Technical Interview. https://www.indeed.
com/career-advice/interviewing/technical-interview-preparation.

[29] IBRAHIM IRFAN. 2020. 6 Steps to Acing the Coding Interview. https://www.
ibrahimirfan.com/6-steps-to-acing-the-coding-interview/.

[30] isuckatcslol. 2016. Doing bad in technical interviews. I can’t talk and code at
the same time. https://www.reddit.com/r/cscareerquestions/comments/3rgjwy/
doing_bad_in_technical_interviews_i_cant_talk_and/.

[31] Eugene Kim. 2016. Amazon’s online job exam takes control of your laptop and
tracks things like mouth movement. https://www.businessinsider.com/amazons-
tough-online-job-interview-process-2016-12

[32] Charlyn M Laserna, Yi-Tai Seih, and James W Pennebaker. 2014. Um... who like
says you know: Filler word use as a function of age, gender, and personality.
Journal of Language and Social Psychology 33, 3 (2014), 328ś338.

[33] Gerardo Matturro, Florencia Raschetti, and Carina Fontán. 2019. A systematic
mapping study on soft skills in software engineering. JUCS-Journal of Universal
Computer Science 25 (2019), 16.

[34] Anthony D. Mays. 2017. Interviewing at Google? Here’s 6 Things You Abso-
lutely Need To Do. https://www.linkedin.com/pulse/interviewing-google-heres-
6-things-you-absolutely-need-anthony-mays/.

[35] Gayle Laakmann McDowell. 2019. Cracking the Coding Interview: 189 Program-
ming Questions and Solutions. CareerCup.

[36] Microsoft. 2020. Interview tips for all roles. https://careers.microsoft.com/us/en/
interviewtips.

[37] Iftekhar Naim, M. Iftekhar Tanveer, Daniel Gildea, and Mohammed Ehsan Hoque.
2015. Automated prediction and analysis of job interview performance: The
role of what you say and how you say it. In 2015 11th IEEE International Confer-
ence and Workshops on Automatic Face and Gesture Recognition (FG), Vol. 1. 1ś6.
https://doi.org/10.1109/FG.2015.7163127

[38] Ihudiya Finda Ogbonnaya-Ogburu, Kentaro Toyama, and Tawanna R. Dillahunt.
2019. Towards an effective digital literacy intervention to assist returning citizens
with job search. In Conference on Human Factors in Computing Systems (CHI).
Article 85, 85:1ś85:12 pages. https://doi.org/10.1145/3290605.3300315

[39] Shivan Kaul Sahib. 2016. ’Clean your desk’ : My Amazon interview ex-
perience. https://shivankaul.com/blog/clean-your-desk-yet-another-amazon-
interview-experience.

[40] Peter Salhofer. 2017. Analysing student behavior in CS courses: A case-study on
detecting and preventing cheating. In 2017 IEEE Global Engineering Education Con-
ference (EDUCON). 1426ś1431. https://doi.org/10.1109/EDUCON.2017.7943035

[41] I. Salman, A. T. Misirli, and N. Juristo. 2015. Are students representatives of pro-
fessionals in software engineering experiments?. In International Conference on
Software Engineering (ICSE, Vol. 1). 666ś676. https://doi.org/10.1109/ICSE.2015.82

[42] Abhimanyu Saxena. 2020. What do top tech companies (Google - Amazon -
Facebook) seek when hiring? https://www.scaler.com/blog/what-do-top-tech-
companies-google-amazon-facebook-seek-when-hiring/.

[43] Jesse Squires. 2021. My worst tech interview experience. https://www.
jessesquires.com/blog/2021/12/01/my-worst-tech-interview-experience/

[44] Lauren Tan. [n. d.]. Hiring Without Whiteboards. https://github.com/poteto/
hiring-without-whiteboards.

[45] Yangshun Tay. 2017. The 30-minute guide to rocking your next coding inter-
view. https://www.freecodecamp.org/news/coding-interviews-for-dummies-
5e048933b82b/.

304

https://www.usenix.org/conference/soups2021/presentation/balash
https://doi.org/10.1177/026101830002000402
https://doi.org/10.1145/3183399.3183415
https://doi.org/10.1145/3183399.3183415
https://doi.org/10.1109/VLHCC.2019.8818836
https://doi.org/10.1145/3377815.3381372
https://softwareengineering.stackexchange.com/questions/102381/is-thinking-out-loud-during-an-interview-really-the-best-strategy
https://softwareengineering.stackexchange.com/questions/102381/is-thinking-out-loud-during-an-interview-really-the-best-strategy
https://learntocodewith.me/posts/technical-interview/
https://learntocodewith.me/posts/technical-interview/
https://doi.org/10.1145/3196709.3196770
https://doi.org/10.1145/3196709.3196770
https://www.qualified.io/blog/posts/the-hidden-cost-of-hiring-software-engineers
https://www.qualified.io/blog/posts/the-hidden-cost-of-hiring-software-engineers
https://doi.org/10.1109/CHASE.2017.8
https://doi.org/10.1109/CHASE.2017.8
https://soft-eng-practicum.github.io/assets/pdfs/Google%20Interview%20Prep%20Guide%20SWE%20.pdf
https://soft-eng-practicum.github.io/assets/pdfs/Google%20Interview%20Prep%20Guide%20SWE%20.pdf
http://www.hanselman.com/blog/how-do-you-deal-with-anxiety-when-live-coding-in-technical-interviews
http://www.hanselman.com/blog/how-do-you-deal-with-anxiety-when-live-coding-in-technical-interviews
https://www.indeed.com/career-advice/interviewing/technical-interview-preparation
https://www.indeed.com/career-advice/interviewing/technical-interview-preparation
https://www.ibrahimirfan.com/6-steps-to-acing-the-coding-interview/
https://www.ibrahimirfan.com/6-steps-to-acing-the-coding-interview/
https://www.reddit.com/r/cscareerquestions/comments/3rgjwy/doing_bad_in_technical_interviews_i_cant_talk_and/
https://www.reddit.com/r/cscareerquestions/comments/3rgjwy/doing_bad_in_technical_interviews_i_cant_talk_and/
https://www.businessinsider.com/amazons-tough-online-job-interview-process-2016-12
https://www.businessinsider.com/amazons-tough-online-job-interview-process-2016-12
https://www.linkedin.com/pulse/interviewing-google-heres-6-things-you-absolutely-need-anthony-mays/
https://www.linkedin.com/pulse/interviewing-google-heres-6-things-you-absolutely-need-anthony-mays/
https://careers.microsoft.com/us/en/interviewtips
https://careers.microsoft.com/us/en/interviewtips
https://doi.org/10.1109/FG.2015.7163127
https://doi.org/10.1145/3290605.3300315
https://shivankaul.com/blog/clean-your-desk-yet-another-amazon-interview-experience
https://shivankaul.com/blog/clean-your-desk-yet-another-amazon-interview-experience
https://doi.org/10.1109/EDUCON.2017.7943035
https://doi.org/10.1109/ICSE.2015.82
https://www.scaler.com/blog/what-do-top-tech-companies-google-amazon-facebook-seek-when-hiring/
https://www.scaler.com/blog/what-do-top-tech-companies-google-amazon-facebook-seek-when-hiring/
https://www.jessesquires.com/blog/2021/12/01/my-worst-tech-interview-experience/
https://www.jessesquires.com/blog/2021/12/01/my-worst-tech-interview-experience/
https://github.com/poteto/hiring-without-whiteboards
https://github.com/poteto/hiring-without-whiteboards
https://www.freecodecamp.org/news/coding-interviews-for-dummies-5e048933b82b/
https://www.freecodecamp.org/news/coding-interviews-for-dummies-5e048933b82b/

ESEC/FSE ’22, November 14ś18, 2022, Singapore, Singapore Mahnaz Behroozi, Chris Parnin, and Chris Brown

[46] Glassdoor Team. 2018. The Surprising Ways Companies Assess Job Applicants).
https://www.glassdoor.com/blog/ways-companies-assess-job-applicants/.

[47] Maria Tomprou, Laura Dabbish, Robert E. Kraut, and Fannie Liu. 2019. Career
mentoring in online communities: Seeking and receiving advice from an online
community. In Conference on Human Factors in Computing Systems (CHI). Article
653, 12 pages. https://doi.org/10.1145/3290605.3300883

[48] Cole Turner. 2021. Why I Don’t Like Take-Home Challenges. https://cole.codes/
posts/why-i-dont-like-take-home-challenges

[49] Jason AWhitfield, Zoe Kriegel, AdamM Fullenkamp, and Daryush DMehta. 2019.
Effects of concurrent manual task performance on connected speech acoustics in
individuals with Parkinson disease. Journal of Speech, Language, and Hearing
Research 62, 7 (2019), 2099ś2117.

[50] J. A. Whittaker. 2000. What is software testing? And why is it so hard? IEEE
Software 17, 1 (2000), 70ś79.

[51] Glenn D Wilson and David Roland. 2002. Performance anxiety. The Science and
Psychology of Music Performance: Creative Strategies for Teaching and Learning
(2002), 47ś61. https://doi.org/10.1093/acprof:oso/9780195138108.003.0004

[52] David Yang. 2020. Whiteboard Coding Interviews: A 6 Step Process to Solve
Any Problem. https://www.fullstackacademy.com/blog/whiteboard-coding-
interviews-a-6-step-process-to-solve-any-problem.

[53] Antonio Waldo Zuardi, José Alexandre de Souza Crippa, Jaime Eduardo Cecílio
Hallak, and Ricardo Gorayeb. 2013. Human experimental anxiety: actual public
speaking induces more intense physiological responses than simulated public
speaking. Brazilian Journal of Psychiatry 35, 3 (2013), 248ś253.

305

https://www.glassdoor.com/blog/ways-companies-assess-job-applicants/
https://doi.org/10.1145/3290605.3300883
https://cole.codes/posts/why-i-dont-like-take-home-challenges
https://cole.codes/posts/why-i-dont-like-take-home-challenges
https://doi.org/10.1093/acprof:oso/9780195138108.003.0004
https://www.fullstackacademy.com/blog/whiteboard-coding-interviews-a-6-step-process-to-solve-any-problem
https://www.fullstackacademy.com/blog/whiteboard-coding-interviews-a-6-step-process-to-solve-any-problem

	Abstract
	1 Introduction
	2 Methodology
	2.1 Research Questions and Hypotheses
	2.2 Participants
	2.3 Tasks
	2.4 Procedure

	3 Analysis
	3.1 Measuring Think-Aloud
	3.2 Measuring Technical Performance

	4 Results
	4.1 Impact on Think-Aloud
	4.2 Impact on Technical Performance

	5 Limitations
	5.1 Construct Validity
	5.2 Internal Validity
	5.3 External Validity

	6 Discussion
	6.1 Communication Trade-offs
	6.2 Ethical Trade-offs
	6.3 Other Considerations

	7 Related Work
	8 Conclusion
	References

