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Introduction
 Testing one of the most used QA approach

 Debugging is another QA approach
 Aiming to the localization and removal of faults
 Manual debugging can be extremely challenging

 Fault localization techniques
 Spectrum-Based Fault Localization (SBFL)
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Resources in mobile applications
 Platform configurations
 Enabled/disabled resources

 Communication features
 Wi-Fi, Bluetooth, etc

 Sensors
 Accelerometer, Gyroscope, etc

 User-controlled options
 Battery saver, Auto-rotate, etc

4



Software Engineering Lab (LabSoft)
https://labsoft-ufmg.github.io

Goal
 Evaluate the use of SBFL in Android 

applications
 Use faults seeded from mutation operators
 Ochiai coefficient as an indicator of suspicious 

faulty code (Abreu et al. 2016) 

 Verify the sensitivity of SBFL to resource 
interaction failures
 Failures of the study of Marinho et al. 2023
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SBFL techniques
 Analysis of the program spectra (test coverage)

 Statements, blocks, predicates, methods

 Produces a ranked list of elements in descending order of 
suspiciousness

 Ochiai is considered one of the best performance metrics

 Intuitively, the more a program element is executed by 
failing tests the more suspicious it is
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Example of Ochiai coefficient
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Resource interaction failures
 Applications with unexpected behaviors
 Manifested in certain combinations of 

enabled/disabled resources
 Settings are tuples of pairs <resource, state>
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Previous studies on this subject
 High number of input settings

 Marinho et al. (2021)
 8 resources (256 settings); 10 applications

 Marinho et al. (2023)
 Sampling testing strategies (Random, One Enabled, One 

Disabled, Most Enabled Disabled, Pairwise)
 14 resources (> 16K settings); 20 applications
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Study Design
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Research Questions
 RQ1: To what extent SBFL can be used for 

mobile applications?

 RQ2: How different is the ranking coefficient 
for faults in resource related classes and faults 
in general classes?

 RQ3: How sensitive is SBFL to variations in 
resource settings?
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Steps of the study
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1. Application selection
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2. Mutants generation
 Mutants generation using the tool presented in 

the study of Diniz et al. (2021)
 Four mutant operators (AOR, ROR, LCR, SBR)

 Resource-related classes identified analyzing 
the imported packages
 Study of Oliveira et al. (2022)
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Generated mutants
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3. Test suite extension
 Same strategy of Marinho et al. (2023)
 OwnTracks, PocketHub, Threema

 Instrumented code aiming to control 14 
common resources
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4. Test execution
 Test suites executed in a real device with code 

coverage enabled
 Each test need to be executed separately

 Experimental effort ranging from 1h45m 
(OpenScale) to 1d3h (WordPress)
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5. Coefficient calculation
 Test reports (test results and test coverage) 

were parsed to get needed information

 Ochiai calculated at the method-level
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Results
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RQ1 – Use of SBFL for mobile apps

* DM = Dead mutants
* MS = Mutation score
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Notas do Presenter
Notas de apresentação
A faulty method cannot be ranked if there is no failed test that executes it
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RQ2 – Ochiai for two groups of 
classes
 Coefficients of Group1 (Resource-related 

classes) and Group2 (General classes)
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Normality test
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Nonparametric test
 Mann-Whitney U test

 H0: Groups 1 and 2 are from the same population
 H1: Groups 1 and 2 are not from the same population

 5% confidence interval (p-value = 0.99)
 Does not allow the rejection of the null hypothesis
 There is no evidence of a difference between the 

groups
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RQ3 – Sensitivity to variations in 
resources settings
 Three applications with failures in three 

executions
 Settings associated to this kind of failure
 Same failure set
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Conclusion
 SBFL was able to rank more than 75% of 

fault code in 5 out of 8 applications
 For the same failure (mutant), ranking 

depends on the combination of enabled 
resources

 Future studies

27



Software Engineering Lab (LabSoft)
https://labsoft-ufmg.github.io

Questions?
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