
Software Engineering Lab (LabSoft)
https://labsoft-ufmg.github.io

Applying Spectrum-Based 
Fault Localization to Android 
Applications 

Euler Horta Marinho
Fischer Ferreira

João P. Diniz
Eduardo Figueiredo

(XXXVII Brazilian Symposium on Software Engineering)



Software Engineering Lab (LabSoft)
https://labsoft-ufmg.github.io

22

Summary
 Introduction
 Background
 Study Design
 Results
 Conclusion



Software Engineering Lab (LabSoft)
https://labsoft-ufmg.github.io

3

Introduction
 Testing one of the most used QA approach

 Debugging is another QA approach
 Aiming to the localization and removal of faults
 Manual debugging can be extremely challenging

 Fault localization techniques
 Spectrum-Based Fault Localization (SBFL)



Software Engineering Lab (LabSoft)
https://labsoft-ufmg.github.io

Resources in mobile applications
 Platform configurations
 Enabled/disabled resources

 Communication features
 Wi-Fi, Bluetooth, etc

 Sensors
 Accelerometer, Gyroscope, etc

 User-controlled options
 Battery saver, Auto-rotate, etc

4



Software Engineering Lab (LabSoft)
https://labsoft-ufmg.github.io

Goal
 Evaluate the use of SBFL in Android 

applications
 Use faults seeded from mutation operators
 Ochiai coefficient as an indicator of suspicious 

faulty code (Abreu et al. 2016) 

 Verify the sensitivity of SBFL to resource 
interaction failures
 Failures of the study of Marinho et al. 2023

5



Software Engineering Lab (LabSoft)
https://labsoft-ufmg.github.io

Background



Software Engineering Lab (LabSoft)
https://labsoft-ufmg.github.io

SBFL techniques
 Analysis of the program spectra (test coverage)

 Statements, blocks, predicates, methods

 Produces a ranked list of elements in descending order of 
suspiciousness

 Ochiai is considered one of the best performance metrics

 Intuitively, the more a program element is executed by 
failing tests the more suspicious it is

7



Software Engineering Lab (LabSoft)
https://labsoft-ufmg.github.io

Example of Ochiai coefficient

8



Software Engineering Lab (LabSoft)
https://labsoft-ufmg.github.io

Resource interaction failures
 Applications with unexpected behaviors
 Manifested in certain combinations of 

enabled/disabled resources
 Settings are tuples of pairs <resource, state>

9



Software Engineering Lab (LabSoft)
https://labsoft-ufmg.github.io

Previous studies on this subject
 High number of input settings

 Marinho et al. (2021)
 8 resources (256 settings); 10 applications

 Marinho et al. (2023)
 Sampling testing strategies (Random, One Enabled, One 

Disabled, Most Enabled Disabled, Pairwise)
 14 resources (> 16K settings); 20 applications

10



Software Engineering Lab (LabSoft)
https://labsoft-ufmg.github.io

Study Design



Software Engineering Lab (LabSoft)
https://labsoft-ufmg.github.io

Research Questions
 RQ1: To what extent SBFL can be used for 

mobile applications?

 RQ2: How different is the ranking coefficient 
for faults in resource related classes and faults 
in general classes?

 RQ3: How sensitive is SBFL to variations in 
resource settings?

12



Software Engineering Lab (LabSoft)
https://labsoft-ufmg.github.io

Steps of the study

13



Software Engineering Lab (LabSoft)
https://labsoft-ufmg.github.io

1. Application selection

14

~71h508



Software Engineering Lab (LabSoft)
https://labsoft-ufmg.github.io

2. Mutants generation
 Mutants generation using the tool presented in 

the study of Diniz et al. (2021)
 Four mutant operators (AOR, ROR, LCR, SBR)

 Resource-related classes identified analyzing 
the imported packages
 Study of Oliveira et al. (2022)

15



Software Engineering Lab (LabSoft)
https://labsoft-ufmg.github.io

Generated mutants

16



Software Engineering Lab (LabSoft)
https://labsoft-ufmg.github.io

3. Test suite extension
 Same strategy of Marinho et al. (2023)
 OwnTracks, PocketHub, Threema

 Instrumented code aiming to control 14 
common resources

17

Auto rotate Wi-Fi
Battery saver Accelerometer
Buetooth Gyroscope
Camera Light
Do not disturb Magnetometer
Location Orientation
Mobile data Proximity



Software Engineering Lab (LabSoft)
https://labsoft-ufmg.github.io

4. Test execution
 Test suites executed in a real device with code 

coverage enabled
 Each test need to be executed separately

 Experimental effort ranging from 1h45m 
(OpenScale) to 1d3h (WordPress)

18



Software Engineering Lab (LabSoft)
https://labsoft-ufmg.github.io

5. Coefficient calculation
 Test reports (test results and test coverage) 

were parsed to get needed information

 Ochiai calculated at the method-level

19



Software Engineering Lab (LabSoft)
https://labsoft-ufmg.github.io

Results



Software Engineering Lab (LabSoft)
https://labsoft-ufmg.github.io

RQ1 – Use of SBFL for mobile apps

* DM = Dead mutants
* MS = Mutation score

21

Notas do Presenter
Notas de apresentação
A faulty method cannot be ranked if there is no failed test that executes it



Software Engineering Lab (LabSoft)
https://labsoft-ufmg.github.io

RQ2 – Ochiai for two groups of 
classes
 Coefficients of Group1 (Resource-related 

classes) and Group2 (General classes)

22

C
oe

ffi
ci

en
ts



Software Engineering Lab (LabSoft)
https://labsoft-ufmg.github.io

Normality test

23



Software Engineering Lab (LabSoft)
https://labsoft-ufmg.github.io

Nonparametric test
 Mann-Whitney U test

 H0: Groups 1 and 2 are from the same population
 H1: Groups 1 and 2 are not from the same population

 5% confidence interval (p-value = 0.99)
 Does not allow the rejection of the null hypothesis
 There is no evidence of a difference between the 

groups

24



Software Engineering Lab (LabSoft)
https://labsoft-ufmg.github.io

RQ3 – Sensitivity to variations in 
resources settings
 Three applications with failures in three 

executions
 Settings associated to this kind of failure
 Same failure set

25



Software Engineering Lab (LabSoft)
https://labsoft-ufmg.github.io

Conclusion



Software Engineering Lab (LabSoft)
https://labsoft-ufmg.github.io

Conclusion
 SBFL was able to rank more than 75% of 

fault code in 5 out of 8 applications
 For the same failure (mutant), ranking 

depends on the combination of enabled 
resources

 Future studies

27



Software Engineering Lab (LabSoft)
https://labsoft-ufmg.github.io

Questions?


	Applying Spectrum-Based Fault Localization to Android Applications 
	Summary
	Introduction
	Resources in mobile applications
	Goal
	Background
	SBFL techniques
	Example of Ochiai coefficient
	Resource interaction failures
	Previous studies on this subject
	Study Design
	Research Questions
	Steps of the study
	1. Application selection
	2. Mutants generation
	Generated mutants
	3. Test suite extension
	4. Test execution
	5. Coefficient calculation
	Results
	RQ1 – Use of SBFL for mobile apps
	RQ2 – Ochiai for two groups of classes
	Normality test
	Nonparametric test
	RQ3 – Sensitivity to variations in resources settings
	Conclusion
	Conclusion
	Questions?

