
An Interview-based Study on Young
Developers’ Perceptions of
Code Smell Detection in Industry

Felipe Ribeiro
Eduardo Fernandes
Eduardo Figueiredo

1

Summary
1. Introduction

2. Research questions

3. Methodology

4. Threats to validity

5. Related works

6. Next steps

2

Introduction

1

3

Introduction
● Empirical studies observe that a single software system can have hundreds,

even thousands, of code smells. This led researchers and practitioners to

employ effort into designing techniques and tools for code smells detection.

4

Introduction
● Empirical studies observe that a single software system can have hundreds,

even thousands, of code smells. This led researchers and practitioners to

employ effort into designing techniques and tools for code smells detection.

● Considerable effort has been put on empirically assessing how practitioners

perceive code smells as relevant to maintain and evolve software systems.

5

Introduction
● Empirical studies observe that a single software system can have hundreds,

even thousands, of code smells. This led researchers and practitioners to

employ effort into designing techniques and tools for code smells detection.

● Considerable effort has been put on empirically assessing how practitioners

perceive code smells as relevant to maintain and evolve software systems.

● We particularly advocate that constantly assessing detect code smells in

industry is crucial for several reasons. The way developers produce source

code evolves rapidly and new technologies emerge.

6

Introduction
● Empirical studies observe that a single software system can have hundreds,

even thousands, of code smells. This led researchers and practitioners to

employ effort into designing techniques and tools for code smells detection.

● Considerable effort has been put on empirically assessing how practitioners

perceive code smells as relevant to maintain and evolve software systems.

● We particularly advocate that constantly assessing detect code smells in

industry is crucial for several reasons. The way developers produce source

code evolves rapidly and new technologies emerge.

● This paper introduces an interview-based study on code smell detection in

industry. 7

Research questions

2

8

Research questions
● RQ1: How do young developers define code smells?

9

Research questions
● RQ1: How do young developers define code smells?

○ The traditional literature defines code smells as anomalous code structures that may hinder

software maintenance and evolution.

10

Research questions
● RQ1: How do young developers define code smells?

○ The traditional literature defines code smells as anomalous code structures that may hinder

software maintenance and evolution.

○ With RQ1, we aim at understanding whether practitioner’s perception on code smells contrasts

with the academic wisdom.

11

Research questions
● RQ2: Are young developers concerned about adding code smells to the

source code they produce?

12

Research questions
● RQ2: Are young developers concerned about adding code smells to the

source code they produce?
○ Several studies suggest that, from the developer perspective, code smells are harmful to

software maintenance and evolution.

13

Research questions
● RQ2: Are young developers concerned about adding code smells to the

source code they produce?
○ Several studies suggest that, from the developer perspective, code smells are harmful to

software maintenance and evolution.

○ Similar to previous studies, we want to understand the extent in which young developers care

about adding code smells to their source code.

14

Research questions
● RQ2: Are young developers concerned about adding code smells to the

source code they produce?
○ Several studies suggest that, from the developer perspective, code smells are harmful to

software maintenance and evolution.

○ Similar to previous studies, we want to understand the extent in which young developers care

about adding code smells to their source code.

○ With RQ2, we aim to complement the current knowledge on the concerns of practitioners,

given that most previous studies are about ten years old.

15

Research questions
● RQ3: Do young developers use tools to detect code smells on the source

code they produce, consume, or maintain?

16

Research questions
● RQ3: Do young developers use tools to detect code smells on the source

code they produce, consume, or maintain?
○ Several studies investigate the industry adoption of automated tools for different purposes

(refactoring, bug detection, and security assessment).

17

Research questions
● RQ3: Do young developers use tools to detect code smells on the source

code they produce, consume, or maintain?
○ Several studies investigate the industry adoption of automated tools for different purposes

(refactoring, bug detection, and security assessment).

○ We are aware that, certain developers show reluctance in using tools as they are afraid of

side-effects like an expected software quality decay.

18

Research questions
● RQ3: Do young developers use tools to detect code smells on the source

code they produce, consume, or maintain?
○ Several studies investigate the industry adoption of automated tools for different purposes

(refactoring, bug detection, and security assessment).

○ We are aware that, certain developers show reluctance in using tools as they are afraid of

side-effects like an expected software quality decay.

○ With RQ3, we aim at investigating this subject in the context of code smell detection tools.

19

Research questions
● RQ3: Do young developers use tools to detect code smells on the source

code they produce, consume, or maintain?
○ Several studies investigate the industry adoption of automated tools for different purposes

(refactoring, bug detection, and security assessment).

○ We are aware that, certain developers show reluctance in using tools as they are afraid of

side-effects like an expected software quality decay.

○ With RQ3, we aim at investigating this subject in the context of code smell detection tools.

○ We advocate for the use of code smell detection tools because the manual detection can be

complex, error-prone, and time consuming.

20

Methodology

3

21

Methodology
● The semi structured interview protocol was defined with background and core

questions and some possible follow-ups.

22

Methodology
● The semi structured interview protocol was defined with background and core

questions and some possible follow-ups.

● Interviewees that matched the target profile were selected and contacted by

convenience from our contact lists.

23

Methodology
● The semi structured interview protocol was defined with background and core

questions and some possible follow-ups.

● Interviewees that matched the target profile were selected and contacted by

convenience from our contact lists.

● The interviews were made through Telegram text messages and the answers

were then pre-processed.

24

Methodology
● The semi structured interview protocol was defined with background and core

questions and some possible follow-ups.

● Interviewees that matched the target profile were selected and contacted by

convenience from our contact lists.

● The interviews were made through Telegram text messages and the answers

were then pre-processed.

● A thematic synthesis was employed on the answers, first extracting codes

from the tabulated answers (open coding), then building the taxonomies (axial

coding).
25

Methodology

Figure 1: Study Steps
26

Methodology

Table 1: Interview Questions
27

Results

4

28

Results - Interviewee Background

Table 2: Interviewee Background
29

Results - RQ1

Figure 2: Themes on the Perceptions about Code Smells
30

Results - RQ1
● There is this assumption in industry that smelly code can lead to bugs, gradually confirmed by

previous empirical researches.

31

Results - RQ1
● There is this assumption in industry that smelly code can lead to bugs, gradually confirmed by

previous empirical researches.
● Mentioning that a code smell might be a technical debt, implies a need for refactoring at some

point during the life cycle of a software system, showing the code smell relevance at some
extent.

32

Results - RQ1
● There is this assumption in industry that smelly code can lead to bugs, gradually confirmed by

previous empirical researches.
● Mentioning that a code smell might be a technical debt, implies a need for refactoring at some

point during the life cycle of a software system, showing the code smell relevance at some
extent.

● In the end, we noticed that all answers are in line with the traditional definition of code smells,
even when some interviewees lacked higher education. This could lead to the perception that
the intuition behind code smells might be learned by practice.

33

Results - RQ2

Figure 3: Themes on the Reasons Not to Add Code Smells
34

Results - RQ2

Figure 4: Themes on Why Young Developers Believe Their
Teammates (Do Not) Share Their Concerns 35

Results - RQ2
● All the seven interviewees claimed that they are concerned with adding code smells to their

source code, even reassuring some reasons why this addition would be an issue.

36

Results - RQ2
● All the seven interviewees claimed that they are concerned with adding code smells to their

source code, even reassuring some reasons why this addition would be an issue.
● However, only a half of them feel that their teammates share the same concern.

37

Results - RQ2
● All the seven interviewees claimed that they are concerned with adding code smells to their

source code, even reassuring some reasons why this addition would be an issue.
● However, only a half of them feel that their teammates share the same concern.
● Raise awareness on the practical relevance of avoiding and eliminating code smells could be

a way to support future maintenance and evolution tasks.

38

Results - RQ3

Figure 5: Do you use tools to detect code smells on the code you
produce, consume or maintain? If yes: when? If not: why? 39

Results - RQ3
● Most interviewees use code smell detection tools and language-specific linters.

40

Results - RQ3
● Most interviewees use code smell detection tools and language-specific linters.
● Unfortunately, costs associated with tool setup, as well as company culture, may prevent

developers from using tools.

41

Results - RQ3
● Most interviewees use code smell detection tools and language-specific linters.
● Unfortunately, costs associated with tool setup, as well as company culture, may prevent

developers from using tools.
● Overall, young developers seem to be willing to use code smell detection tools if properly

encouraged.

42

Threats to validity

5

43

Threats to validity

● Internal Validity: Using Telegram as the tool for the interviews.

44

Threats to validity

● Internal Validity: Using Telegram as the tool for the interviews.
○ This might be an issue due to the possible lack of engagement of the interviewees during the

interviews.

45

Threats to validity

● Internal Validity: Using Telegram as the tool for the interviews.
○ This might be an issue due to the possible lack of engagement of the interviewees during the

interviews.

○ The tool allowed to closely interact with the interviewees and ask questions in a more efficient

and reactive way to mitigate this issue.

46

Threats to validity

● Internal Validity: Using Telegram as the tool for the interviews.
○ This might be an issue due to the possible lack of engagement of the interviewees during the

interviews.

○ The tool allowed to closely interact with the interviewees and ask questions in a more efficient

and reactive way to mitigate this issue.

● Conclusion Validity: Possibility to not analyze the data correctly.

47

Threats to validity

● Internal Validity: Using Telegram as the tool for the interviews.
○ This might be an issue due to the possible lack of engagement of the interviewees during the

interviews.

○ The tool allowed to closely interact with the interviewees and ask questions in a more efficient

and reactive way to mitigate this issue.

● Conclusion Validity: Possibility to not analyze the data correctly.
○ This could result in losing important data analysis or even lower quality conclusions.

48

Threats to validity

● Internal Validity: Using Telegram as the tool for the interviews.
○ This might be an issue due to the possible lack of engagement of the interviewees during the

interviews.

○ The tool allowed to closely interact with the interviewees and ask questions in a more efficient

and reactive way to mitigate this issue.

● Conclusion Validity: Possibility to not analyze the data correctly.
○ This could result in losing important data analysis or even lower quality conclusions.

○ We performed the thematic synthesis based on literature guidelines and during pairing

sessions.

49

Threats to validity

● External Validity: Recruiting by convenience and amount of interviewees.

50

Threats to validity

● External Validity: Recruiting by convenience and amount of interviewees.
○ It may be very challenging to generalize our study findings.

51

Threats to validity

● External Validity: Recruiting by convenience and amount of interviewees.
○ It may be very challenging to generalize our study findings.

○ We did the best we could to achieve diversity in the interviewee background.

52

Threats to validity

● External Validity: Recruiting by convenience and amount of interviewees.
○ It may be very challenging to generalize our study findings.

○ We did the best we could to achieve diversity in the interviewee background.

● Construct Validity: The construction of the interview process.

53

Threats to validity

● External Validity: Recruiting by convenience and amount of interviewees.
○ It may be very challenging to generalize our study findings.

○ We did the best we could to achieve diversity in the interviewee background.

● Construct Validity: The construction of the interview process.
○ A poorly structured interview protocol could lead to interviews that would not answer our

research questions.

54

Threats to validity

● External Validity: Recruiting by convenience and amount of interviewees.
○ It may be very challenging to generalize our study findings.

○ We did the best we could to achieve diversity in the interviewee background.

● Construct Validity: The construction of the interview process.
○ A poorly structured interview protocol could lead to interviews that would not answer our

research questions.

○ We defined the interview protocol in pairs and iteratively.

55

Related works

6

56

Related works

● Aiko Yamashita and Leon Moonen. 2012. Do code smells reflect important

maintainability aspects?. In Proceedings of the 28th International Conference

on Software Maintenance (ICSM). 306–315.

57

Related works

● Aiko Yamashita and Leon Moonen. 2012. Do code smells reflect important

maintainability aspects?. In Proceedings of the 28th International Conference

on Software Maintenance (ICSM). 306–315.

● Aiko Yamashita and Leon Moonen. 2013. Do developers care about code

smells? An exploratory survey. In Proceedings of the 20th Working

Conference on Reverse Engineering (WCRE). 242–251.

58

Related works

● Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and

Andrea De Lucia. 2014. Do they really smell bad? A study on developers’

perception of bad code smells. In Proceedings of the 30th International

Conference on Software Maintenance and Evolution (ICSME). 101–110.

59

Related works

● Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, and

Andrea De Lucia. 2014. Do they really smell bad? A study on developers’

perception of bad code smells. In Proceedings of the 30th International

Conference on Software Maintenance and Evolution (ICSME). 101–110.

● Davide Taibi, Andrea Janes, and Valentina Lenarduzzi. 2017. How developers

perceive smells in source code: A replicated study. Information and Software

Technology (IST) 92 (2017), 223–235.

60

Next steps

7

61

Next steps

● Greatly increase the amount of interviewees and their diversity.

62

Next steps

● Greatly increase the amount of interviewees and their diversity.

● Replicate the interview with undergraduate and graduate students and

compare the practitioners’ perception with a more academic-oriented

perception.

63

Next steps

● Greatly increase the amount of interviewees and their diversity.

● Replicate the interview with undergraduate and graduate students and

compare the practitioners’ perception with a more academic-oriented

perception.

● Replicate the interview with contributors to Open Source Software (OSS)

projects.

64

An Interview-based Study on Young
Developers’ Perceptions of
Code Smell Detection in Industry

65

Felipe Ribeiro
Eduardo Fernandes
Eduardo Figueiredo

