
Ripples of a Mutation — An Empirical Study of Propagation
Effects in Mutation Testing

Hang Du

University of California, Irvine

Irvine, USA

hdu5@uci.edu

Vijay Krishna Palepu

Microsoft, Silicon Valley Campus

Mountain View, USA

vijay.palepu@microsoft.com

James A. Jones

University of California, Irvine

Irvine, USA

jajones@uci.edu

ABSTRACT
The mechanics of how a fault reveals itself as a test failure is of

keen interest to software researchers and practitioners alike. An

improved understanding of how faults translate to failures can guide

improvements in broad facets of software testing, ranging from test

suite design to automated program repair, which are premised on

the understanding that the presence of faults would alter some test

executions.

In this work, we study such effects by mutations, as applicable

in mutation testing. Mutation testing enables the generation of a

large corpus of faults; thereby harvesting a large pool of mutated

test runs for analysis. Specifically, we analyze more than 1.1 million

mutated test runs to study if and how the underlying mutations

induce infections that propagate their way to observable failures.

We adopt a broad-spectrum approach to analyze such a large

pool of mutated runs. For every mutated test run, we are able to

determine: (a) if the mutation induced a state infection; (b) if the

infection propagated through the end of the test run; and (c) if the

test failed in the presence of a propagated infection.

By examining such infection-, propagation- and revealability-

effects for more than 43,000 mutations executed across 1.1 million

test runs we are able to arrive at some surprising findings. Our

results find that once state infection is observed, propagation is fre-

quently detected; however, a propagated infection does not always

reveal itself as a test failure. We also find that a significant portion of

survived mutants in our study could have been killed by observing

propagated state infections that were left undetected. Finally, we

also find that different mutation operators can demonstrate substan-

tial differences in their specific impacts on the execution-to-failure

ripples of the resulting mutations.

CCS CONCEPTS
• Software and its engineering→ Software verification and
validation.

KEYWORDS
software fault infection, error propagation, mutation testing, dy-

namic analysis, empirical study

ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0217-4/24/04.

https://doi.org/10.1145/3597503.3639179

ACM Reference Format:
Hang Du, Vijay Krishna Palepu, and James A. Jones. 2024. Ripples of a

Mutation — An Empirical Study of Propagation Effects in Mutation Testing.

In 2024 IEEE/ACM 46th International Conference on Software Engineering
(ICSE ’24), April 14–20, 2024, Lisbon, Portugal. ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3597503.3639179

1 INTRODUCTION
The mechanisms of how software faults lead to observable failures

are of obvious interest to practitioners and researchers. For prac-

titioners, such fault-to-failure effects can inform their debugging

efforts and can inform their design choices for testing and error

recovery. For researchers, such fault-to-failure effects can inform

their innovations in fields such as testing, fault localization, and

automatic program repair. In this work, we describe an empirical

analysis of faults (as mutations) and track their runtime effects at

multiple points of their execution to better and more extensively

describe the ways in which they may (or may not) lead to failure.

Early research into the runtime effects of faults described the

process by which faults lead to software failure. Morell and Of-

futt, et al. [14, 38, 40] described the process by which software

faults cause software failure through Reachability (i.e., execution),
Infection, and then Propagation, which was later named the RIP

model of software failure. Voas [47] also describes this phenome-

non with the PIE model (i.e., Execution, Infection, and Propagation,
acronym in reverse). More recently, the RIP model was extended

to include a final requirement for faults to cause failure, which

includes Revealability — to form the new RIPR model of software

failure [4, 27].

With these models in mind, several researchers (e.g., [2, 5, 12, 15,
21, 28, 35, 36, 41, 42, 48, 50]) performed targeted empirical studies

to better understand how parts of these models describe how faults

lead to failures. Of particular interest, a number of researchers [2,

21, 28, 34–36] investigated the related phenomena of coincidental
correctness (CC) and Failed Error Propagation (FEP). Both CC and

FEP describe a runtime effect of executing a fault, but that fault

somehow does not cause an observable failure. Such phenomena

are of particular interest for researchers who are creating fault-

localization techniques [5, 20, 21, 44], because the fault execution

and infection of the state do not correspond to software failure,

and hence such localization techniques may be confused or misled.

Although valuable in their insights, the research focuses on those

executions that lead to non-failure excludes many other runtime

effects, for example, the various ways in which execution of faults

can lead to failure.

While such targeted investigations are valuable to our under-

standing of how infection can sometimes not lead to failure, in

this work we seek to extend the scope of study from end-to-end —

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3597503.3639179
https://doi.org/10.1145/3597503.3639179
https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3597503.3639179&domain=pdf&date_stamp=2024-04-12

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Hang Du, Vijay Krishna Palepu, and James A. Jones

from R (Reachability) to R (Revealability) in the RIPR model — and

also better describe the ways in which various factors, such as the

program or fault type, influence those effects. We study not only the

ways that fault execution leads to non-failure (i.e., CC and FEP), but

instead study all phenomena that occur upon fault execution, in an

attempt to better understand the full range of software behaviors

and the prevalence of each. Moreover, in this work, we extend the

size of such studies, in terms of the number of software projects

and faults, to get a more complete picture of such phenomena.

To achieve this detailed and more comprehensive study, we uti-

lized mutation testing to inject over 40,000 mutation-based faults

and developed an empirical framework that allows for generaliz-

able and reproducible investigations of the end-to-end execution

of faults, their infections of the state, the propagation of those

infections, and the revealability of those infection propagations.

We describe our empirical framework to assess various aspects of

the RIPR model, including similar investigations into coincidental

correctness and FEP of prior work, but also extending such investi-

gatory scopes to assess other paths for a fault execution to possibly

infect state, possibly propagate infection, and possibly be revealed.

Such diverse possible runtime effects can be described as ripples
of the fault, i.e., the many ways in which Reachability (i.e., execu-
tion) of a fault may (or may not) lead to Revealability (i.e., failure).
Moreover, our empirical framework also allows for several other

insights that can be gleaned through our analysis.

As a result of our study, we found a number of revealing results

that should give concern to the fault-based software testing com-

munity, or at least, these results should be taken into consideration

in related future work. We found that state infections typically

follow mutation execution, with infection rates ranging from 64.3%

to 94.1%, and propagation rates ranging from 84.9% to 92.6%, given

infection. However, there is a noticeable disparity between propa-

gation and test revealing. Moreover, infection usually exhibits as

method exit anomalies, such as uncaught exceptions, thrownwithin

the mutated method and leads to early termination of mutation test

runs, leaving test oracles unchecked. Furthermore, approximately

18.5%–89.4% of surviving mutants could potentially be killed based

on infection or propagation information. Finally, different mutation

operators can demonstrate startlingly different impacts in specific

RIPR stages.

The main contribution of this paper can be summarized as:

• We propose and implement a practical and scalable end-to-

end RIPR analysis framework for mutants. The experimental

data are open sourced
1
and available for replication.

• We studied 10 popular open-source projects, performing

RIPR analysis on over 40,000 mutants, and executing over

1,000,000 mutation test runs.

• We unveiled several revealing results across our subject pro-

grams through our comprehensive RIPR analysis, including

(1) a recurring trend in the execution-to-failure ripples of

mutation executions, (2) a detailed investigation into unex-

pected exceptions and the corresponding early-termination

phenomenon triggered by mutation, (3) an estimation of kil-

lable surviving mutants based on the existing test suite, and

(4) the ripple variances led by different mutation operators.

1
https://doi.org/10.5281/zenodo.10505175

2 BACKGROUND AND MOTIVATION

public class TestSubAccount {
 @Test public void testWallet() {
 var a = new SubscriptionAccount();
 var canCharge = a.chargeOneMonth();

 var canCharge = a.chargeOneMonth();

 assertTrue(canCharge);
 assertEquals(0, a.wallet);
 }
} // no test on membership status
 // (isMemberActive)

public class SubscriptionAccount {
 public int wallet = 10;

 // membership status
 public boolean isMemberActive = false;

 public boolean chargeOneMonth() {
 boolean canCharge = wallet >= 10;

 if (canCharge) {
 wallet -= 10;
 isMemberActive = true
 }

 // mutation: < changed to <=
 if (wallet <= 0) {
 isMemberActive = false
 }

 return canCharge;
 }
}

a.wallet = 10
a.isMemberActive = false

a.wallet = 10
a.isMemberActive = false
return value = true

a.wallet = 0
a.isMemberActive = false
return value = true

Checkpoint #1: Infection

Checkpoint #2: Propagation

Checkpoint #3: Revealability

No test, or test assertion failed
Actual: a.isMemberActive = false

Expected: a.isMemberActive = true

Checkpoint #0: Reached

Mutation Executed

Mutated Program Flow
Original Program Flow

Legend

T1:
T2:
T3:
T4:

T4:
T5:
T6:
T7:
T8:
T9:

P1:
P2:
P3:
P4:
P5:
P6:
P7:
P8:
P9:

P10:
P11:
P12:
P13:
P14:
P15:
P16:
P17:
P18:
P19:
P20:
P21:
P22:

Figure 1: Illustrating the flow of a mutated program’s pass-
ing test run, modeled using RIPR: Reach, Infect, Propagate,
Reveal.

To fail on a test assertion, a bug’s effects must ripple through

multiple stages of a program’s test execution. First, the test runmust

reach the bug. Upon execution, the bug must cause an infection in

the program’s runtime state. This state infection may infect other

parts of the program’s state, thus propagating itself through the

program’s test execution. The infected state must propagate enough,

such that it is accessible within the scope of the test casemethod and

its test assertions. To ultimately trigger a failure, the test’s assertion

would need to detect a deviation in the program’s (infectious) output

from its expected result. We think of this as the RIPR model of a

software fault’s execution: “Reach → Infect → Propagate →
Reveal” — as originally proposed by Li and Offutt [27].

But do faults always cause such rippling effects from execution

of the fault (i.e., reach) to the exposed external symptom of the in-

fection (i.e., reveal)? To better illustrate the RIPRmodel of analyzing

faults, we use a minimal code example as shown in Figure 1.

https://doi.org/10.5281/zenodo.10505175

Ripples of a Mutation — An Empirical Study of Propagation Effects in Mutation Testing ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Motivating Example for RIPR. Figure 1 depicts the execution

flow within a test run of a mutated program. The execution flow

starts out with the test method testWallet (line T2), where it

creates a new account object of the type SubscriptionAccount,
and invokes the chargeOneMonth method on the account. This

method invocation causes the execution to leave the test code and

enter chargeOneMonth in the project production code, where it

runs through a preliminary check on the wallet amount, to then

process monthly subscription fees. Upon charging the monthly fees,

the execution sets the isMemberActive to true.

Reachability. However, the test run proceeds to execute a mutation

on line P16 next, that changes a “less than zero” (< 0) conditional
check on the wallet amount to a “less than or equals zero” (<= 0)
check. This is a case where the test execution has managed to reach

a fault in the program — demarcated as “Checkpoint #0: Reached”

in Figure 1.

Infection. Executing the fault causes the isMemberActive method

to be erroneously reset to false, since the value of wallet at this
point in the execution is 0. This infection persists to the end of the

chargeOneMonth execution, and escapes the runtime scope of the

mutated method — highlighted as “Checkpoint #1: Infection” in

Figure 1.

Propagation. As the test execution returns back to the test code to

line T4, the infection in isMemberActive returns with it. The test

runs assertions on chargeOneMonth’s return value and the value

of wallet, which it expects to be 0. Figure 1 shows a signpost

for “Checkpoint #2: Propagation” at the end of the test method,

highlighting the infected state for isMemberActive. We consider

this as an example of an infection propagating through a whole

test run.

Revealability.However, notice the lack of any assertion for the value
of isMemberActive. A lack of any validation for isMemberActive
causes the test to pass — even as there is an erroneous, or infected

program state that has propagated to the test code. In other words,

the test method testWallet fails to reveal faulty logic that updates
the isMemberActive property of the SubscriptionAccount, even
when the test executed the fault. We depict this lack of revelation

in Figure 1 with “Checkpoint #3,” where we show both the actual

and expected state of isMemberActive.
Such an example motivates us to consider the mechanics of how

faults are revealed (or not revealed) as failures. Following the four

“Checkpoints” depicted in Figure 1, we ask such questions, as: Upon

execution, how consistently do faults produce an infection? How

many such infections propagate through test executions? Finally,

how many such propagated infections are revealed as test failures?

Prior Work. Existing works have investigated these effects for real

software bugs [2, 11, 21, 48], manually seeded artificial bugs [28, 33–

36, 51], and to a certain extent for automatically generated muta-

tions [5, 21, 27, 48, 50]. Such works were typically motivated by

the goal of improving the effectiveness of spectra-based fault lo-

calization techniques, where the sensitivity and precision of test

cases to detect faults is vital. However, such works often examined

only a limited number of faults (real or artificial), for a small set

of programs. Furthermore, prior studies did not investigate all ef-

fects — Infection, Propagation and Reveal — for the faults they

considered. Propagation is either considered within the (mutated)

statement level or approximated as test failures. In other words,

prior works were selective in the effects that they studied for the

limited number of faults in their experiments.

Our Investigation. In this work, we study the RIPR effects specif-

ically for mutations — localized, artificially generated software

faults — as applicable in mutation testing. Limited attention has

been paid to the RIPR effects of executing mutations, in part due to

the scale of the number of mutations generated by mutation testing

frameworks. However, we are motivated by such large volumes of

mutations offered by mutation testing. We believe that the exper-

imental data from such large volumes mutation test runs would

lend confidence in the trends we observe, and in the conclusions

we derive from them. Indeed, we collect data about the RIPR effects
for nearly all auto-generated mutations in their respective test runs,

for the programs in our study.

Further, we are not selective about the effects that we study; i.e.,
for every mutation in our experiments, we examine the Infection,
Propagation and Reveal effects, for every test case that reaches

and executes the mutation. This would enable our experimental

analysis to evaluate possible correlations between such different ef-

fects. For instance, using our data we may answer questions such as,

“how often do mutations produce any infection?” ; or “how consistently
do infections propagate to the test code?” ; or “how often do tests detect
propagated infections, revealing as test failures?” Answering such
questions about how mutation-caused infections occur, propagate

and get revealed as test failures has practical implications for both

mutation testing and improving tests in general.

With such research and results, we may better understand such

rippling effects of fault execution, and thus better inform our work

as developers and researchers. For example, quantifying the number

of mutations that do not produce an infection in the program’s

state can help estimate equivalence of mutants with the original

program. Understanding the degree of infection- and propagation-

effects caused by mutations, and any correlations between them,

can guide a programmer’s attention to mutations (and mutation

operators) that are more likely to cause infections that propagate as

program outputs. Finally, undetected state infections that propagate

back to the test code present clear potential for additional tests and

test assertions that detect such uncaught infections to cause failures.

3 METHODOLOGY: SCALABLE ANALYSIS OF
MUTATED TEST RUNS

Devising an experiment for an empirical study that analyzed mil-

lions of mutation test runs posed unique challenges. To compare the

RIPR-effects of different mutation runs, our experiment required

a generic analysis to compare executions for any two mutation

test runs. In this section, we describe the key concepts of such

an execution analysis, and also outline the steps in that analysis,

which employ those concepts. The step-wise application of these

concepts allowed us to implement an experimental setup that eval-

uated and compared over 1.1 million mutation runs and 11 million

no-mutation test runs.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Hang Du, Vijay Krishna Palepu, and James A. Jones

Post-Execution PhaseMutation Execution PhasePre-Execution Phase

Static Field
Cleaners

(Per Test Case)

PropagationChe
ckpoint

(Test-code)

Project-wise Instrumentation

Reachability
Checkpoint

Mutation-wise Instrumentation

Infection
Checkpoint

Mutated Method
Mutated

& Original Method

Mutation
Test Run

 Original
Test Runs
(10 times)

Test Execution
State Collection

Test Run Syncrhonization
Consistent?
(no-mutation

runs)

State
comparison

Excluded in our
analysis

True

False

Determine
observed

RIPR effects

Figure 2: Steps in the Scalable Analysis of Mutated Test Runs

3.1 Key Concepts
3.1.1 Using Mutations to Create Faults. Our methodology uses

mutation operators, as applicable in mutation testing, to inject

faults in real-world subject programs. Using mutation operators

allows us to create a vast corpus of software faults. Such faults are

localized to individual instructions within the original programs.

The generated mutations, when executed by their respective test

cases, offered over 1.1 million mutated test runs for analysis.

3.1.2 Synchronizing the Original and Mutated Test Runs. Localized
mutations to the original program may potentially change execu-

tion flows when compared to the original run. While expected, such

mutation-induced deviation in execution flow can potentially cause

the mutated run to be drastically different in terms of program

semantics and outcomes, but also with regards to changes in the

granular data- and control-flows. Comparing such differing exe-

cutions, even for the same program may not always lend itself to

scalable automation.

Figure 1 shows an example deviation in the execution flow when

a mutation on line P16 is executed. Executing the mutation on line

P16, causes the execution to enter the if-block on line P17 (shown

in the color red), and this resets the value of isMemberActive to
false. However, without the mutation on line P16, the execution

would have skipped the if-block entirely, causing the execution

to jump from line P16 to P20, and this leaving isMemberActive
to be true. We approach this by selecting execution checkpoints

that are comparable across the original and mutated test runs, de-

spite differences in the two runs. At such comparable execution

checkpoints, across the mutated and original runs, we check for

differences in the program’s runtime state. The selection of such

checkpoints becomes a key concern, and we describe them next.

3.1.3 Selecting Comparable Checkpoints. We adopt the RIPRmodel,

to select comparable checkpoints across the original and mutated

runs, and thus synchronize the executions across such checkpoints.

Specifically, for every execution (mutated or original), we identify

four comparable checkpoints at the points of: (a) Reachability, (b)

Infection, (c) Propagation, and (d) Revealability.

Reachability. We define the “Reachability Checkpoint” as the point

in the program’s execution that executes the mutation for the first

time. Figure 1 depicts this as “Checkpoint #0” in our motivating

example. Indeed, the mutation will only be executed in the mu-

tated run, and not the original run of the program. As such, to

identify a comparable point in the original run, as the “Reachability

Checkpoint,” we adopt the following approach:

(1) We note the enclosing method that contains the mutation;

we refer to that method as𝑀 ;

(2) We then trigger the mutation run, and count the number of

times method𝑀 was executed before the enclosed mutation

is executed for the first time; we refer to that count as 𝑖 ,

and denote 𝑀𝑖 as the iteration of 𝑀 that first executed the

mutation.

(3) We then run the original program, andmark the 𝑖𝑡ℎ execution

of 𝑀 as the “Reachability Checkpoint” in the original run.

Note that𝑀 would be executed without the mutation in the

original run.

We adopt this count-based approach for the “Reachability Check-

point” because a method that contains a mutation may need to be

executed more than once before the enclosed mutation is executed.

As such, simply selecting the very first execution of the method in

the original test, may not be an appropriately synchronized check-

point when compared with the mutated run in which we can detect

the exact execution instance of the mutation.

Infection. We define the “Infection Checkpoint” as the method-exit

of the mutation’s enclosing method (𝑀), after the mutation’s first

execution. Again, the original test runwill not have themutation for

us to track its execution. As such, we will first identify𝑀𝑖 (i.e., the
“Reachability Checkpoint,” as stated above), and mark its method

exit as the “Infection Checkpoint” in the original test run. Further,

when tracking method exits in both original and mutated runs, we

not only account for graceful exits via return statements, but also

ungraceful exits via unhandled exceptions.

Prior works have defined the location of the “infection check-

point” in different ways, e.g., the program expression that contains

the mutation [22, 25, 41]; or within the mutant’s enclosing state-

ment [22, 41]; or at the end of the mutation’s basic block [22, 41];

or before the return statement [2, 21]; or outside the method con-

taining the mutation [2, 21].

Unlike such prior works, our infection point definition at the

end of the method’s execution allows us to compare program state

(e.g., from local variables and fields) that was used throughout

the method’s scope, and not be limited to the state available in

inner scopes of an individual basic block, statement, or expression.

Moreover, it offers a stronger signal of state infection because it

requires that such infection survives to the exit of the method.

Propagation. For both mutated and original runs, we mark the

method-exit of the test case method as the “Propagation Check-

point.” Such an execution point would mark the end of the test

case. When comparing the state differences at the “Propagation

Checkpoint,” across a mutated and original run, we compare all

state (e.g., return values, object instantiations, fields, static/global

variables) that is accessible from the test case method in question.

Ripples of a Mutation — An Empirical Study of Propagation Effects in Mutation Testing ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Figure 1 depicts the “Propagation Checkpoint” as “Checkpoint #2”

for our motivating example’s test flow.

Revealability. Finally, we use the result of the test case run, i.e.,
pass or fail, to compare and synchronize the “Revealability” of

the mutated and original test runs. In Figure 1, we show this as

“Checkpoint #3.” In our motivating example, the mutated test run

passes, just as with the original run; we thus would consider the

mutation at line P16 as unrevealed by the test method testWallet.

3.1.4 Comparing Program States. Figure 1 depicts examples of

runtime program state that we monitor and compare across such

checkpoints (from the original, non-mutated test run with the mu-

tated test run), which may include values contained within local

variables, fields of an object that is accessible from the local state,

and shared state such as globally declared static variables. Further,

when observing state differences, we account for both primitive

values and entire object graphs for user-defined types.

However, comparing granular primitive values or object graph

structures at multiple execution points, for over a million test runs

would not have been a scalable approach. Instead, we perform

hashing (using the SHA-265 hashing algorithm) of the collective

program state observed at such synchronized checkpoints. We then

used differences in such computed hashes to ultimately detect differ-

ences in runtime states at synchronized checkpoints across original

and mutated test runs.

Additionally, program state can often be different across two

different executions due to non-deterministic factors that are inde-

pendent of any fault or mutation. Such examples include, but are

not limited to, values produced by pseudo-random generators, or

ephemeral object identifiers (e.g., hashCode in Java) that change

across program runs. We detect such non-determinism in program

state and exclude it before comparing execution states. We do this

by running the original program’s test runs several times and creat-

ing an exclusion list of fields and variables that are known to have

shown differing runtime values across the several runs, and exclud-

ing their values at the time of computing hashes for the observed

program state.

3.1.5 Running Test Cleaners. Finally, we would also note that be-

tween test runs, we employ cleaner code (via test code instrumenta-

tion) that would clear out any state pollution taking place by prior

test runs. In our early pilot studies, we found several instances of

state pollution, especially in shared global variables, which were

also investigated in flaky test research [31, 45]. Employing test

cleaners would mitigate flakiness led by test-order dependencies

introduced by mutations [45]. Further, as noted above in the dis-

cussion on capturing program state, we run the original test run

several times, where we check against any accidental flakiness in

the original test run.

3.2 Detailed Steps within the Analysis
The aforementioned key concepts are applied in a multi-step pro-

cess to analyze the mechanics of how mutations are revealed as

failures by tests, as shown in Figure 2. In particular, analyzing

the RIPR-effects of mutations within a single software project in-

volves the following three phases, which we describe below: (a)

a pre-execution phase; (b) a mutation-execution phase; (c) a post-

execution phase.

3.2.1 Pre-Execution Phase. Before executing any mutated or origi-

nal test runs, the pre-execution phase instruments the entire project

with three different kinds of probes to perform different tasks:

• Static Field Cleaners. These probes are inserted in the test

code, to clear out any polluted state in the program’s globally

shared variables, e.g., static fields. Such state pollution may

take place when executing a test, and may cause flakiness

and non-determinism in subsequent test runs.

• Propagation Checkpoint Probes. These probes are inserted in

the test code, and are designed tomonitor and dump program

state that is accessible from the test code as the test finishes,

at the “Propagation Checkpoint.”

3.2.2 Mutation-Execution Phase. After instrumenting the program

and its test suite with an initial set of probes, the analysis proceeds

to execute the test cases against the mutations and the original pro-

gram. Each mutation warrants its own set of probes to collect pro-

gram states at the synchronized checkpoints from the original and

mutated test runs. For each mutation, the program is instrumented

with the following probes in the specific method that contains that

specific mutation:

• Reachability Checkpoint Probe. This instrumentation probe

identifies the first time the mutation was executed. Addition-

ally, it tracks the number of times the mutation’s method

was invoked for the mutation to be executed the first time.

The count of method invocation from the mutated run is also

used to identify the corresponding “Reachability Checkpoint”

in the original program run.

• Infection Checkpoint Probe. This instrumentation probe col-

lects program state at the “Infection Checkpoint.” These

probes are placed at the method-exit points and are acti-

vated after the mutated-, or original-execution arrives at the

“Reachability Checkpoint.”

After inserting probes for a specific mutation, the analysis pro-

ceeds to execute tests against the mutation, and collects runtime

states at the infection and propagation checkpoints in the mu-

tated and original test runs. The mutated run is performed first,

followed by several rounds (10 times in our experiment) of the

original test runs. The multiple rounds of the original test runs

help guard against mistakenly treating non-deterministic runtime

state as possible infection, and flaky execution flows (as discussed

in Section 3.1.4). Once the current mutation’s test runs are ana-

lyzed, its corresponding instrumentation is completely removed, in

preparation for analyzing the next mutation.

3.2.3 Post-Execution Phase. In the final phase of the analysis, the

program state from the original test runs, which were executed

ten times, are analyzed to detect flaky test runs. If a test run for

the original program (i.e., without the mutation) exhibits flaky

execution flows across its ten iterations, then we exclude the results

of that particular test, for that specific mutation. If however the

ten test iterations were consistent, then the test results, specifically

the captured runtime states are compared across the original and

mutated test runs.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Hang Du, Vijay Krishna Palepu, and James A. Jones

Additionally, these ten test iterations are also used to create

an exclusion list of fields that store non-deterministic states (e.g.,
as a result of pseudo-random generators). Note that such non-

deterministic, differing values may show up across test runs that are

otherwise non-flaky and consistent in their test (pass/fail) results.

4 EMPIRICAL STUDY
In this section, we outline the empirical design to answer key re-

search questions to unveil the ripples of mutations. First, we de-

scribe the way in which we operationalize the methodology that

we presented in Section 3. Then, we provide subject programs for

our empirical study. Finally, we enumerate our research questions

that direct our study, along with rationale and empirical measures

that we used to investigate them.

4.1 Implemented Empirical Methodology
To actualize our empirical methodology described in Section 3,

we performed our experimentation on Java programs (see Sec-

tion 4.2), using mutations to allow us to scale up to tens of thou-

sands of faults. For mutation, we use the PIT [10] mutation-testing

tool. We modified PIT’s source code to allow us to customize and

extend its functionality. Our PIT extensions enable a number of

features that are needed for our methodology: it (1) performs per-

mutation instrumentation of the mutated run to identify the exact

method-execution instance when the mutation was first executed,

(2) perform per-mutation instrumentation on both the mutated

and original, non-mutated program to output state information at

the infection checkpoint (i.e., the exact method-execution instance

identified by the prior point), and (3) allows us to run the original

non-mutated program several times (in our experiment, we ran it

ten times) to identify any state that were non-deterministic (e.g.,
hash codes, thread IDs) so that we could later exclude them from

the state comparisons.

We wrote customized instrumentation using the ASM [7] Java

class manipulation tool. Our instrumentation injects probes into

the program to identify the point in the execution at which the

mutation was first executed and log all state values. To output all

of the state, we used the XStream library [1].

For the first (reachability) checkpoint, the probes are placed

immediately before the mutation to log the occurrence of the mu-

tation execution. For the second (infection) checkpoint, the probes

are placed on all method exits of the mutated method and log the

memory state upon the first method-execution instance in which

the mutation was executed. For the purposes of our study, we de-

fine “infection” as any differences found between the mutated and

original non-mutated program run in the memory state (excluding

those that we identify as non-deterministic, as described above) or

method-exit behavior (e.g., original test run exits with a return
instruction, but the mutated run exits with an athrow). For the
third (propagation) checkpoint, the probes log accessible memory

state (i.e., return values, static fields, object instantiations) within

the test (i.e., JUnit) code. For the purposes of our study, we define
“propagation” as any differences found between the mutated and

original non-mutated program run in the memory state (excluding

those that we identify as non-deterministic, as described above)

and/or uncaught exceptions that lead to test failure. Finally, for the

Table 1: Experimental Subject Programs

avg.

Subject Project KLoC MS #T #RT %Ex #Run #Mut

commons-cli 6.2 90% 438 48.1 0.4% 35,940 719

joda-money 9.2 80% 1,483 104.3 0.6% 97,957 895

cdk-data 10.6 46% 4,429 69.7 3.3% 213,972 1,371

jline-reader 13.3 46% 189 30.3 4.1% 125,451 2,808

commons-valid. 16.8 72% 533 17.2 2.7% 35,632 1,725

commons-codec 24.1 85% 1,156 10.7 19.9% 33,766 3,286

spotify-web-api 24.4 60% 291 7.7 1.1% 20,802 1,920

commons-text 26.6 85% 1,242 9.7 4.7% 34,266 3,784

dyn4j 66.1 77% 2,348 28.2 12.7% 249,480 8,143

jfreechart 138.4 33% 2,344 9.5 5.3% 320,357 18,926

fourth (revealability) checkpoint, we log the test outcome of pass or

fail. We monitor for flaky tests by way of the repeated non-mutated

runs and exclude any tests that fail for the non-mutated run and/or

exhibit flakiness. The proportion of such exclusion is reported in

Table 1. Additionally, we monitor the number of test assertions that

are executed within the test code for each test case.

4.2 Subject Programs
Our experiments were performed on ten open-source Java projects,

as detailed in Table 1. We selected real-world Java projects built

with Maven, with JUnit5 test cases
2
written by developers, and

whose source code is accessible on GitHub.

All chosen subjects minimally rely on mocking libraries, are

not heavy on threads, support XStream serialization, and do not

have tests explicitly tagged as flaky tests. Each column of Table 1

presents the following: (1) the subject project, (2) lines of code

(KLoC)
3
, (3) mutation score (MS), (4) number of test cases (#T), (5)

average number of reaching tests (avg. #RT) for each mutation, (6)

the proportion of test runs excluded (%Ex) from our analysis, (7)

number of analyzed test runs (#Run), and (8) number of analyzed

mutants (#Mut). In all, we analyzed execution data from over 1.1

millionmutated test runs, including another 11million non-mutated

test runs (to distinguish deterministic state from non-deterministic,

as well as to control for test flakiness), for 43,577 mutations. The

scale of this analysis required over a week of computational time

(on a 3.2Ghz ARM-based M1 processor with 16 GB of RAM).

4.3 Research Questions
In an effort to comprehensively understand the rippling effects of

fault infection and propagation, we devised the following set of key

research questions:

RQ1 How do ripples of mutations progress?

RQ2 How does mutation execution affect test execution behav-

iors?

RQ3 What is the potential number of survivingmutants that could

have been killed?

RQ4 How do mutation operators affect ripples of mutations?

RQ1: How do ripples of mutations progress? To comprehend the

progression of how mutations infect the states, propagate into the

test code, and are eventually revealed by test failures — a phenome-

non of test progression we term as “ripples” — we comprehensively

2
We translated any JUnit4 test cases to JUnit5.

3
Lines of code are calculated as the number of Java source code lines using the statistics

plugin in Intellij

Ripples of a Mutation — An Empirical Study of Propagation Effects in Mutation Testing ICSE ’24, April 14–20, 2024, Lisbon, Portugal

monitor executions according to our empirical methodology de-

scribed in Section 3. With the resulting execution data, we can

categorize test runs to determine the degree to which mutations

ripple through the directed acyclic decision graph, in Figure 3.

executed (R)

infected not-infected (I)

propagated not-propagated (P)

failed passed (R)

Figure 3: Conceptual Sankey Diagram
RQ2: How does mutation execution influence test execution
behaviors?

Our initial investigation revolves around the effects of mutation

execution on the altered method’s exit behaviors. Existing research

suggests that mutations can cause test failures due to uncaught

exceptions, with some of these instances subsequently classified as

trivial [23]. A significant proportion of failing test runs involved

in mutation analysis result from exogenous crashes (i.e., exceptions
triggered by the Java virtual machine or third-party libraries) and

source-code oracles (e.g., defensive programming) [16]. We conjec-

ture that such test failures, not being revealed by test oracles, are

likely detected sooner at our infection observation point—in other

words, prior to the exit of the mutated method. For instance, the

execution of a mutation might cause an uncaught exception to be

thrown from the altered method, which was expected to return a

value upon the exit of the original method.

RQ3: What is the potential number of surviving mutants
that could have been killed? For the test runs that demonstrate

execution, infection, propagation, but then surprisingly produce

test passes, we turn our attention toward a practical application of

this analysis. This involves estimating the number of potentially

“killable” surviving mutants, leveraging propagation and infection

information. More specifically, our objective is to estimate the quan-

tity of surviving mutants that could, in theory, be killed using state-

based propagation and infection data with the existing test suite.

As a corollary, this investigation implies the possible maximum

number of test-equivalent mutants among surviving mutants.

RQ4: How do mutation operators affect ripples of mutations?
Lastly, we investigate the variations in ripples caused by different

mutation operators. To answer this research question, we aggregate

our results by the mutation type to investigate how differing types

of faults could lead to different rippling execution effects.

5 RESULTS
RQ1: How do ripples of mutations progress?
Figure 4 employs Sankey diagrams [24] to illustrate the end-to-

end flow and progression of execution, infection, propagation, and

revealability in the test runs analyzed per subject project. These

diagrams represent the proportion of flows through the varying

widths of their categories.

Central to our analysis are five distinct phases in the RIPR model,

represented in each diagram: starting from the “Execution” phase

and progressing through “Reaching,” “Infection,” “Propagation,” and

finally “Reveal”. The designation of each phase is indicated at the

bottom of the corresponding diagram for each Sankey Diagram,

with detailed definitions available in Section 4.1.

Each phase is allocated to a specific column within the diagram,

potentially subdivided into multiple categories (or steps). For exam-

ple, the “Start” phase is located in the leftmost column, containing

only the “start” category. As another example, the “Revealability”

phase, positioned in the rightmost column, comprises two cate-

gories: “PS” (pass) and “FL” (fail).

The color coding in our Sankey diagrams serves to differentiate

the category statuses as monitored by our instrumentation probes.

Categories depicting impact by a mutation are distinctly marked

in red, i.e., Execution (“E”), Infection (“I”), Propagation (“P”), and

Failure (“FL”). Conversely, categories representing no impact due

to the mutation are highlighted in green, i.e., No Infection (“NI”), No
Propagation (“NP”), and Pass (“PS”).

Furthermore, the width of the flows between categories of differ-

ent phases is indicative of the proportion of test runs transitioning

between categories, providing a visual representation of their rela-

tive distribution. The percentages adjacent to each category name in

the diagram represent the proportion of test runs within a specific

phase, summing to 100% across each phase (column).

Consider the case of commons-cli, as illustrated in Figure 4b: All

test runs commence in the “Start” phase, followed by the execution

of the injected fault
4
. 73.8% of test runs exhibit state infection after

its mutation execution. And then 66.2% of (all) test runs show both

infection and the propagated infection into test code (which is

nearly 90% of the 73.8% of test runs that showed infection). Test

runs with observed propagation primarily result in test failures at

the revelation stage as computed by the division of the percentages

on “FL” and “P” categories.

We find some commonmutation ripple patterns (Figure 4) among

all subject projects: State infections typically follow mutation ex-

ecution, with infection rates ranging from 64.3% to 94.1%. Once

state infection is observed, propagation is frequently detected, with

propagation rates ranging from 84.9% to 92.6% among infected test

runs. However, notably, there is a noticeable disparity between

propagation and test outcomes. Some test runs pass despite observ-

able propagation in the test code. Test runs showing propagation

end up with test failures in 60.3%–95.2% of cases.

Despite these observations, there are some variances, such as

jline-reader, where most propagations are not revealed by test runs.

Moreover, small offshoots flow from “not infected” to “propagated”

in all subjects, accounting for 0.5%–6.8% of all test runs. These flows

represent test runs with observed propagation but with no observed

infection. This phenomenon occurs due to repeated execution of

the mutation — infection may not occur on the first execution of

the mutation when our probes check for it, but only infects the

state on a subsequent execution of the mutation site.

Observation 1. All subject projects exhibit similarmutation-
triggered ripples. While infections usually permeate into the test
code, they do not necessarily give rise to revelations.

4
Test runs that fail to reach the injected faults are excluded from this analysis.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Hang Du, Vijay Krishna Palepu, and James A. Jones

start E

NI(32.7%)

I(67.3%)

NP(31.7%)

P(1.0%)
NP(5.0%)

P(62.4%)

PS(52.0%)

FL(48.0%)

Start Reaching Infection Propagation Revealability

(a) cdk-data

start E

NI(26.2%)

I(73.8%)

NP(24.2%)

P(2.0%)
NP(7.6%)

P(66.2%)

PS(41.5%)

FL(58.5%)

Start Reaching Infection Propagation Revealability

(b) commons-cli

start E

NI(23.2%)

I(76.8%)

NP(18.7%)

P(4.5%)
NP(8.4%)

P(68.3%)

PS(35.2%)

FL(64.8%)

Start Reaching Infection Propagation Revealability

(c) commons-codec

start E

NI(28.9%)

I(71.1%)

NP(22.1%)

P(6.8%)
NP(6.0%)

P(65.1%)

PS(32.8%)

FL(67.2%)

Start Reaching Infection Propagation Revealability

(d) commons-text

start E

NI(28.8%)

I(71.2%)

NP(24.7%)

P(4.1%)
NP(10.8%)

P(60.4%)

PS(47.1%)

FL(52.9%)

Start Reaching Infection Propagation Revealability

(e) commons-validator

start E

NI(32.3%)

I(67.7%)

NP(29.1%)

P(3.2%)
NP(5.1%)

P(62.6%)

PS(60.3%)

FL(39.7%)

Start Reaching Infection Propagation Revealability

(f) jfreechart

start E

NI(22.9%)

I(77.1%)

NP(19.6%)

P(3.3%)
NP(5.7%)

P(71.5%)

PS(78.0%)

FL(22.0%)

Start Reaching Infection Propagation Revealability

(g) jline-reader

start E

NI(35.7%)

I(64.3%)

NP(34.5%)

P(1.2%)
NP(8.8%)

P(55.5%)

PS(46.0%)

FL(54.0%)

Start Reaching Infection Propagation Revealability

(h) joda-money

start E

NI(5.9%)

I(94.1%)

NP(5.5%)

P(0.5%)
NP(9.5%)

P(84.6%)

PS(41.1%)

FL(58.9%)

Start Reaching Infection Propagation Revealability

(i) spotify-web-api

start E

NI(30.6%)

I(69.4%)

NP(26.1%)

P(4.5%)
NP(9.8%)

P(59.7%)

PS(52.3%)

FL(47.7%)

Start Reaching Infection Propagation Revealability

(j) dyn4j

E: execution I: infected NI: not infected P: propagated NP: not propagated PS: pass FL: fail

Figure 4: Ripples of mutations — Sankey diagram per project

RQ2: How does mutation execution influence test
execution behaviors?
Table 2 presents how mutations alter the exit behaviors of mu-

tated methods at our infection observation point. The first column

denotes the count and percentage of failing test runs related to

non-return mutation operators
5
. The second column denotes the

5
Return value mutation operators merely mutate the return value without causing

any exceptions at method exit, hence related test runs are excluded here.

Ripples of a Mutation — An Empirical Study of Propagation Effects in Mutation Testing ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 2: Method Exit Anomalies

Program Name #Failed Anomaly Source-Code Oracle

commons-cli 13,965 (60.32%) 4,216 (30.19%) 1,728 (40.99%)

commons-text 17,832 (67.95%) 4,985 (27.96%) 1,882 (37.75%)

joda-money 36,495 (50.68%) 10,486 (28.73%) 5,931 (56.56%)

jline-reader 21,448 (19.36%) 9,842 (45.89%) 1,529 (15.54%)

commons-validator 13,340 (51.42%) 4,947 (37.08%) 1,159 (23.43%)

cdk-data 80,398 (45.35%) 38,550 (47.95%) 5,717 (14.83%)

spotify-web-api 2,688 (34.19%) 677 (25.19%) 0 (0.00%)

commons-codec 18,097 (64.04%) 5,250 (29.01%) 1,195 (22.76%)

jfreechart 96,626 (37.92%) 31,676 (32.78%) 12,749 (40.25%)

cdk-data 80,398 (45.35%) 38,550 (47.95%) 5,717 (14.83%)

dyn4j 89,603 (44.43%) 47,065 (52.53%) 22,324 (47.43%)

number of test runs witnessing anomalous method exits and their

relative ratio among failing test runs, i.e., the first column. The

third column lists the number of test runs in which method-exit

anomalies caused by source-code oracles [16], namely intended

exceptions specified by the developers, are observed, along with

their proportion of the second column.

As an example, for commons-cli, 13,965 test runs (60.32%) fail,
wherein 4,216 (30.19%) display altered method exits at the infection

observation point. This may manifest as a change from a “return”

exit in the non-mutated test run to an uncaught exception in the

mutated test run. Furthermore, source-code oracles contribute to

40.99% of such anomalies.

Our findings indicate that 25.19%–52.53% of failing test runs

encounter an anomaly at the method exits during even the first

exit of the mutated method post mutation execution. Surprisingly,

source-code oracles contribute up to 56.56% of these anomalies,

rendering mutants trivially killed. Notably, spotify-web-api does
not exhibit such anomalies, largely because this project includes

high-level APIs that do not depend on the project-defined source-

code oracles for intentional exception handling.

Observation 2. A significant portion of failing test runs
(25.19%–52.53%) exhibit method exit anomalies, largely influ-
enced by source code oracles. These mutations often result in
early terminations, even before assertion checks.

RQ3: What is the potential number of surviving
mutants that could have been killed?
We introduce two categories of currently surviving mutants that

possibly could have been killed, based on our infection or propa-

gation data, using the existing test suite. First, the propagation of

memory infection into test code suggests the potential to augment

current test cases with new revealing test oracles. Second, memory

infection at either the infection or propagation observation point

could potentially help inform new test cases. This can be achieved

by introducing source-code oracles [16], inline tests [29, 30], using

mocking frameworks to monitor the behavior of the object under

test, or by creating a new test case that replicates the arguments

passed into the mutated method with new assertions.

In Figure 5, we show how existing test data from the project’s test

suite could potentially kill surviving mutants in our analysis. “Prop-

agation Kill” refers to surviving mutants that can be killed due to

observed propagation into the test code. “Propagation or Infection

com
mon

s-c
li

com
mon

s-t
ext

jod
a-m

on
ey

jlin
e-r

ea
de

r

com
mon

s-v
alid

ato
r

cdk
-da

ta

spo
tify

-web
-ap

i

com
mon

s-c
od

ec

jfre
ech

art
dy

n4
j

0.0

0.2

0.4

0.6

0.8

Ki
lla

bl
e

Su
rv

iv
in

g
M

ut
an

ts

Propagation Kill
Propagation or Infection Kill

Figure 5: Surviving mutants that are killable by current tests

Kill” indicates surviving mutants that could potentially be killed

based on either observed infection or propagation. We observe that

18.5%–89.4% of surviving mutants could potentially be killed using

existing test data and propagation information (41.3%, on average,

survived mutants could be killed in test code, and 51.8%, on average,

survived mutants could be killed in either test or production code).

With additional infection information, this number could slightly

increase to 35.6%–91.6%. The fact that this difference is relatively

small between locally detectable infection and test-code propagated

infection can be attributed to the fact that most observed infections

are propagated into the test code, as demonstrated in the Sankey

diagram in response to RQ1. We can also infer that 8.4%–64.4% of

surviving mutants are test-equivalent mutants [22] (i.e., mutants

that cannot be detected by their test cases). Additionally, upon

breaking down the mutation operators, we discover that most test-

equivalent mutants, using existing test data, are generated by the

“ConditionalBoundary” mutation operator.

Observation 3. On average 51.8% of surviving mutants
could potentially be killed by existing test suite based on infec-
tion and propagation information.

RQ4: How do mutation operators affect ripples of
mutations?
Figure 6 presents Sankey diagrams for six distinct mutation oper-

ators, aggregating the top six most frequent test runs across all

subject projects
6
. Notwithstanding their shared trait as depicted

in Figure 4, i.e., propagation typically follows infection, observable

distinctions are found in the specific segments of these mutator-

specific Sankey diagrams.

The ripples of certain mutation operators can be inferred from

their definitions. Consider, for example, the ripples caused by the

ConditionalBoundary (Figure 6a) andNegatedConditional (Figure 6b)
mutation operators. The former is noticeably less adept at induc-

ing state infection (29.4%) than the latter (80.3%), suggesting that

the change from “==” to “!=” demands less rigorous test data for

6
Due to page limitations, the Sankey Diagrams for the other four mutation operators

can be accessed in our supplementary material, available at https://doi.org/10.5281/

zenodo.10505175

https://doi.org/10.5281/zenodo.10505175
https://doi.org/10.5281/zenodo.10505175

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Hang Du, Vijay Krishna Palepu, and James A. Jones

start E

NI(70.6%)

I(29.4%)

NP(68.1%)

P(2.4%)
NP(2.3%)

P(27.1%)

PS(74.0%)

FL(26.0%)

Execution Infection Propagation RevealabilityStart

(a) ConditionalBoundary
134505 aggregated test runs

start E

NI(19.7%)

I(80.3%)

NP(17.1%)
P(2.6%)
NP(6.0%)

P(74.3%)

PS(40.8%)

FL(59.2%)

Execution Infection Propagation RevealabilityStart

(b) NegateConditional
439264 aggregated test runs

start E

NI(40.9%)

I(59.1%)

NP(39.0%)

P(1.8%)
NP(3.3%)

P(55.9%)

PS(86.0%)

FL(14.0%)

Execution Infection Propagation RevealabilityStart

(c) VoidMethodCall
207997 aggregated test runs

start E

NI(5.6%)

I(94.4%)

NP(3.8%)
P(1.8%)
NP(9.6%)

P(84.8%)

PS(25.4%)

FL(74.6%)

Execution Infection Propagation RevealabilityStart

(d) NullReturns
97187 aggregated test runs

start
E

NI(30.5%)

I(69.5%)

NP(78.8%)

P(21.2%)
NP(11.2%)

P(88.8%)

PS(18.3%)

FL(53.6%)

Execution Infection Propagation RevealabilityStart

(e) Math
135194 aggregated test runs

start E

NI(48.6%)

I(51.4%)

NP(89.1%)

P(10.9%)
NP(16.2%)

P(83.8%)

PS(55.5%)

FL(162.7%)

Execution Infection Propagation RevealabilityStart

(f) BooleanTrue
44547 aggregated test runs

Figure 6: Sankey diagram aggregated by mutation operators

anomaly detection, while converting “>” to “>=” necessitates more

stringent test cases to invoke infection. In the case of the Void-
MethodCall (Figure 6c) mutation operator, the diagram reveals a

prominent divide between propagation and revelation, i.e., only
25.0% of test runs with propagated infection are revealed as test

failures, implying that only a minimal subset of test cases possess

the required assertions for such propagation being revealed. It can

be inferred that VoidMethodCall mutation operators, substituting a

void method call with a blank one, tend to create state infections

often overlooked or checked by a small proportion of test cases by

developers. Furthermore, the NullReturnValues (Figure 6d) muta-

tion operator, which modifies the return value to null, consistently

leads to state infection and propagation, culminating in a significant

proportion of test failures compared to the other three operators.

Such heterogeneous characteristics, portrayed through unique

segments of the Sankey diagram, suggest that ripples of mutations

can differ based on the mutation operators. We further extrapolate

that these ripple variances might be applicable to other mutant

faults provided by different mutation operators and even real faults.

Observation 4. Different mutation operators can demon-
strate substantial differences in their specific impacts on the
ripples of mutations.

6 DISCUSSIONS AND IMPLICATIONS
Our large-scale propagation analysis based on the RIPR model un-

veils unique insights for mutation-based software testing research.

Firstly, propagation cannot be simply approximated as test fail-

ures in real-world test cases. Our Sankey Diagrams, as presented in

Figure 4 and Figure 6, reveal that infection at the (mutated) method

exit often facilitates propagation. However, such propagation is

not necessarily revealed by test failures. A point to note in this

regard is that we selected the method exit of the mutated method as

the point at which we detected infection. A different choice could

have been at the instruction that immediately follows the mutated

instruction, and such a choice may cause a different likelihood of

propagation of the infection back to the test case.

Secondly, the gaps between propagation and test failures indicate

the potential for augmenting test suites by leveraging existing test

data. Figure 5 shows that a significant portion of surviving mutants

can potentially be killed by using infection or propagation informa-

tion. This can be achieved by adding test assertions, source-code

oracles, or inline tests [29, 30], albeit with some code modifications.

Thirdly, a mutant kill usually occurs early, often as a result of an

exception being thrown even within the (mutated) method, which

could be due to intentional defensive programming by developers.

However, if such infection behaviors are deemed undesirable, such

as when evaluating the quality of test assertions, mutation operators

should be designed with consideration of the mutated method’s

context to mitigate such immediate, failure-inducing crashes.

Lastly, the choice of mutation operators in mutation-based analy-

sis should bemade carefully. Variances in ripples caused by different

mutation operators could potentially explain the wide range, 0%–

56.4% [21, 34, 50, 51], of previously reported failed-error-propagation

or coincidental-correctness rates for mutants or real bugs in Java.

Ripples of a Mutation — An Empirical Study of Propagation Effects in Mutation Testing ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Such coincidental correctness or failed-error propagation may mis-

lead fault localization, but may be preferred by mutation testing,

which seeks to identify stubborn mutants, i.e., those that are killable
but not easily killed. We posit that the choice of mutation operators

can influence the evaluation of fault-localization techniques.

7 THREATS TO VALIDITY
Threats to internal validity primarily stem from our particular

choices of observation points and experimental setup for exploring

the RIPR model. However, we mitigated the influence of test-order

dependencies introduced by mutations [31, 45] and other original

test-run inconsistencies at different levels by: (1) repeating 10 origi-

nal test runs and excluding inconsistent test runs in our analysis,

(2) enforcing crafted static-field cleaners per test run, and (3) syn-

chronizing mutation test runs and original test runs with careful

instrumentation-point choices

These ripples might manifest differently for other projects or pro-

gramming languages. However, our experiment’s subject programs

are mature, open-source projects with human-written test suites.

Furthermore, our extensive experimental scale, comprising over 1.1

million mutated test runs in total, offers unique insights into prop-

agation analysis. Finally, we note that findings based on mutations

may not necessarily generalize to real-world, human-introduced

bugs. However, investigating the rippling effects of mutations is

indeed the explicit scoping of this work.

Lastly, threats to construct validity could stem from the mutation

testing tool we used. We used PIT with its default group of muta-

tion operators. Though PIT is a commonly-used, mature mutation

testing framework [10, 17], there is a risk that a mutation could un-

intentionally corrupt shared state [45]. To tackle such mutant order

dependencies without escalating experimental overhead, we apply

patches to potentially corrupted static fields defined in the project

before each test run, which we additionally validate by dumping

these shared states at the beginning of each test run.

8 RELATEDWORK
The RIP model, originating from the concurrent dissertations of

Morell and Offutt, evolved under two monikers: Propagation, In-

fection, and Execution (PIE) [39] and Reachability, Necessity, and

Sufficiency [14]. Voas subsequently proposed a dynamic failure

model for PIE analysis [47], yielding statistical estimates for crucial

fault execution characteristics. The software testing community has

since widely adopted these RIP or PIE concepts [3]. This traditional

RIP model recently received a critical addition, Revealability, which

bridges the gap between propagated infection in test case method

and test failures [4, 27]. Our works seeks to further our understand-

ing of such fault-to-failure models, when applied to mutations and

mutation testing.

Mutation testing aims to assess test suite quality by aggregating

revealing results, i.e., test outcomes, into mutants’ killability [13].

Particularly, weak mutation testing accelerates the traditional ap-

proach by integrating infection results into this measure [19, 32].

Empirical studies often account for infection and revealability into

a mutant’s status in both weak and strong mutation testing analysis

[25, 41, 42, 49]. Moreover, such infection and propagation informa-

tion can optimize mutation testing by avoiding unnecessary test

executions [22, 25] and aid in estimating equivalent mutants [6].

Our empirical analysis compliments such works by offering addi-

tional insights into the mechanics of mutation executions, which

may improve mutation-testing efficiency.

Researchers have shown interest in instances where executed

program faults, do not alter the output nor lead to test failures. These

situations, referred to as failed error propagation, strong/weak

coincidental correctness, error masking, or fault masking, exhibit

slight variations in definition [5, 9, 21, 26, 33, 35, 37, 48]. They

have been investigated in particular in relation to coverage-based

fault localization (CBFL) as potential threats to traditional CBFL

techniques [2, 33–35, 51]. In contrast, our work is motivated in

mutation testing that typically favors stubborn mutants with lower

killability ratios [8, 18, 43, 46].

Infection and propagation information can also be harnessed to

devise new test cases or enhance existing tests. Li et al. [27] outlined
diverse test oracle strategies, subsequently assessing their efficacy

in auto-generated tests. Similarly, Xiong et al. [50] introduced the

concept of an ‘inner oracle’, evaluating the potential of these oracles

in reducing test suite size during specific test input executions.

Liu et al. [29, 30] proposed inline tests, and based on infection

information, suggested a mutation-driven method to incorporate

test-case-specific oracles into production code. Insights from our

empirical study can potentially inform such techniques for test

generation and enhancement.

9 CONCLUSION
In this work we study the effects of mutations, in how they infect

program state that propagates through the mutated run, to be ulti-

mately revealed as an observable failure. The execution-to-failure

effects of mutations have received limited attention in prior works

in-part due to the large scale at which mutations are generated

by mutation testing frameworks. Whereas, our study is motivated

precisely by the large pool of faulty test runs that mutation testing

offers to analyze. An examination of such a large corpus of faulty

test runs stands to lend confidence to our experimental findings.

The results of our investigation show that once a mutation causes

infection, it is likely to propagate through the end of the test run;

however, such propagation of an infection does not always result

in its revelation as a test failure. We also find that the choice of

mutation operator can have a substantial impact on the execution-

to-failure ripple effects of the resulting mutations. Finally, we note

that for the mutations for our subject programs, on average 51.8% of

surviving mutations could be potentially killed if the executing tests

observes a propagated state infection, by means of a test assertion,

source-code oracle, or inline tests.

In future work, we seek to further investigate a number of fac-

tors, such as how real faults behave in comparison with mutations.

Moreover, we will further analyze state differences at a more fine-

grained level to not only whether infection propagates, but perhaps

the extent to which it does so.

ACKNOWLEDGMENTS
The second author’s opinions expressed in this publication are

solely his and do not purport to reflect the opinions or views of his

employer, Microsoft.

ICSE ’24, April 14–20, 2024, Lisbon, Portugal Hang Du, Vijay Krishna Palepu, and James A. Jones

REFERENCES
[1] 2022. XStream - About XStream. https://x-stream.github.io/ [Accessed 01-08-

2023].

[2] Rawad Abou Assi, Chadi Trad, Marwan Maalouf, and Wes Masri. 2019. Co-

incidental correctness in the Defects4J benchmark. Software Testing, Verifi-
cation and Reliability 29, 3 (2019), e1696. https://doi.org/10.1002/stvr.1696

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1696 e1696 STVR-18-

0045.R2.

[3] Paul Ammann and Jeff Offutt. 2008. Introduction to software testing. Cambridge

University Press.

[4] P. Ammann and J. Offutt. 2016. Introduction to Software Testing. Cambridge

University Press. https://books.google.com/books?id=58LeDQAAQBAJ

[5] Kelly Androutsopoulos, David Clark, Haitao Dan, Robert M Hierons, and Mark

Harman. 2014. An analysis of the relationship between conditional entropy and

failed error propagation in software testing. In Proceedings of the 36th international
conference on software engineering. 573–583.

[6] Amani Ayad, Imen Marsit, JiMeng Loh, Mohamed Nazih Omri, and Ali Mili.

2019. Estimating the Number of Equivalent Mutants. In 2019 IEEE International
Conference on Software Testing, Verification and Validation Workshops (ICSTW).
112–121. https://doi.org/10.1109/ICSTW.2019.00039

[7] E. Bruneton, R. Lenglet, and T. Coupaye. 2002. ASM: A code manipulation tool to

implement adaptable systems. In Adaptable and Extensible Component Systems.
[8] Thierry Titcheu Chekam, Mike Papadakis, Maxime Cordy, and Yves Le Traon.

2021. Killing stubborn mutants with symbolic execution. ACM Transactions
on Software Engineering and Methodology (TOSEM) 30, 2 (2021), 1–23. https:

//doi.org/10.1145/3425497

[9] David Clark and Robert M Hierons. 2012. Squeeziness: An information theoretic

measure for avoiding fault masking. Inform. Process. Lett. 112, 8-9 (2012), 335–340.
[10] Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis, and An-

thony Ventresque. 2016. PIT: A Practical Mutation Testing Tool for Java (Demo).

In Proceedings of the 25th International Symposium on Software Testing and Analy-
sis (Saarbrücken, Germany) (ISSTA 2016). Association for Computing Machinery,

New York, NY, USA, 449–452. https://doi.org/10.1145/2931037.2948707

[11] Murial Daran and Pascale Thévenod-Fosse. 1996. Software error analysis: A

real case study involving real faults and mutations. ACM SIGSOFT Software
Engineering Notes 21, 3 (1996), 158–171.

[12] Vidroha Debroy and W. Eric Wong. 2009. Insights on Fault Interference for

Programs with Multiple Bugs. In Proceedings of the 2009 20th International Sym-
posium on Software Reliability Engineering (ISSRE ’09). IEEE Computer Society,

Washington, DC, USA, 165–174. https://doi.org/10.1109/ISSRE.2009.14

[13] R.A. DeMillo, R.J. Lipton, and F.G. Sayward. 1978. Hints on Test Data Selection:

Help for the Practicing Programmer. Computer 11, 4 (1978), 34–41. https:

//doi.org/10.1109/C-M.1978.218136

[14] Richard A. DeMillo and A. Jefferson Offutt. 1991. Constraint-Based Automatic

Test Data Generation. IEEE Trans. Softw. Eng. 17, 9 (sep 1991), 900–910. https:

//doi.org/10.1109/32.92910

[15] Nicholas DiGiuseppe and James A. Jones. 2011. Fault Interaction and its Reper-

cussions. In Proceedings of the International Conference on Software Maintenance.
[16] Hang Du, Vijay Krishna Palepu, and James A. Jones. 2023. To Kill a Mutant:

An Empirical Study of Mutation Testing Kills. In Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis (Seattle, WA,

USA) (ISSTA 2023). Association for Computing Machinery, New York, NY, USA,

715–726. https://doi.org/10.1145/3597926.3598090

[17] Ali Ghanbari, Samuel Benton, and Lingming Zhang. 2019. Practical Program

Repair via Bytecode Mutation. In Proceedings of the 28th ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis (Beijing, China) (IS-
STA 2019). Association for Computing Machinery, New York, NY, USA, 19–30.

https://doi.org/10.1145/3293882.3330559

[18] Rahul Gopinath, Amin Alipour, Iftekhar Ahmed, Carlos Jensen, and Alex Groce.

2015. How hard does mutation analysis have to be, anyway?. In 2015 IEEE
26th International Symposium on Software Reliability Engineering (ISSRE). IEEE,
216–227. https://doi.org/10.1109/ISSRE.2015.7381815

[19] W.E. Howden. 1982. Weak Mutation Testing and Completeness of Test Sets. IEEE
Transactions on Software Engineering SE-8, 4 (1982), 371–379. https://doi.org/10.

1109/TSE.1982.235571

[20] Alfredo Ibias and Manuel Núñez. 2021. SqSelect: Automatic assessment of failed

error propagation in state-based systems. Expert Systems with Applications 174
(2021), 114748.

[21] Gunel Jahangirova, David Clark, Mark Harman, and Paolo Tonella. 2020. An

empirical study on failed error propagation in Java programs with real faults.

arXiv preprint arXiv:2011.10787 (2020).

[22] René Just, Michael D. Ernst, and Gordon Fraser. 2014. Efficient Mutation Analysis

by Propagating and Partitioning Infected Execution States. In Proceedings of the
2014 International Symposium on Software Testing and Analysis (San Jose, CA,

USA) (ISSTA 2014). Association for Computing Machinery, New York, NY, USA,

315–326. https://doi.org/10.1145/2610384.2610388

[23] René Just, Bob Kurtz, and Paul Ammann. 2017. Inferring Mutant Utility from

Program Context. In Proceedings of the 26th ACM SIGSOFT International Sym-
posium on Software Testing and Analysis (Santa Barbara, CA, USA) (ISSTA

2017). Association for Computing Machinery, New York, NY, USA, 284–294.

https://doi.org/10.1145/3092703.3092732

[24] Alex BW Kennedy and H Riall Sankey. 1898. The Thermal Efficiency of Steam

Engines.. InMinutes of the Proceedings of the Institution of Civil Engineers, Vol. 134.
Thomas Telford-ICE Virtual Library, 278–312.

[25] Sang-Woon Kim, Yu-Seung Ma, and Yong-Rae Kwon. 2013. Combining weak and

strong mutation for a noninterpretive Java mutation system. Software Testing 23

(12 2013). https://doi.org/10.1002/stvr.1480

[26] Janusz Laski, Wojciech Szermer, and Piotr Luczycki. 1995. Error masking in

computer programs. Software Testing, Verification and Reliability 5, 2 (1995),

81–105.

[27] Nan Li and Jeff Offutt. 2017. Test Oracle Strategies for Model-Based Testing. IEEE
Transactions on Software Engineering 43, 4 (2017), 372–395. https://doi.org/10.

1109/TSE.2016.2597136

[28] Yihan Li and Chao Liu. 2012. Using cluster analysis to identify coincidental

correctness in fault localization. In 2012 Fourth International Conference on Com-
putational and Information Sciences. IEEE, 357–360.

[29] Yu Liu, Pengyu Nie, Anna Guo, Milos Gligoric, and Owolabi Legunsen. 2023.

Extracting Inline Tests from Unit Tests. In Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis (Seattle, WA, USA)

(ISSTA 2023). Association for Computing Machinery, New York, NY, USA, 1458–

1470. https://doi.org/10.1145/3597926.3598149

[30] Yu Liu, Pengyu Nie, Owolabi Legunsen, and Milos Gligoric. 2023. Inline Tests. In

Proceedings of the 37th IEEE/ACM International Conference on Automated Software
Engineering (Rochester, MI, USA) (ASE ’22). Association for Computing Machin-

ery, New York, NY, USA, Article 57, 13 pages. https://doi.org/10.1145/3551349.

3556952

[31] Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and DarkoMarinov. 2014. An empir-

ical analysis of flaky tests. In Proceedings of the 22nd ACM SIGSOFT international
symposium on foundations of software engineering. 643–653.

[32] Brian Marick. 1991. The weak mutation hypothesis. In Proceedings of the sympo-
sium on Testing, analysis, and verification. 190–199.

[33] Wes Masri and Rawad Abou Assi. 2010. Cleansing test suites from coincidental

correctness to enhance fault-localization. In 2010 third international conference
on software testing, verification and validation. IEEE, 165–174.

[34] Wes Masri, Rawad Abou-Assi, Marwa El-Ghali, and Nour Al-Fatairi. 2009. An

Empirical Study of the Factors That Reduce the Effectiveness of Coverage-Based

Fault Localization. In Proceedings of the 2nd International Workshop on Defects in
Large Software Systems: Held in Conjunction with the ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2009) (Chicago, Illinois)
(DEFECTS ’09). Association for Computing Machinery, New York, NY, USA, 1–5.

https://doi.org/10.1145/1555860.1555862

[35] Wes Masri and Rawad Abou Assi. 2014. Prevalence of Coincidental Correctness

and Mitigation of Its Impact on Fault Localization. ACM Trans. Softw. Eng.
Methodol. 23, 1, Article 8 (feb 2014), 28 pages. https://doi.org/10.1145/2559932

[36] Yi Miao, Zhenyu Chen, Sihan Li, Zhihong Zhao, and Yuming Zhou. 2012. Identi-

fying Coincidental Correctness for Fault Localization by Clustering Test Cases..

In SEKE. 267–272.
[37] Yi Miao, Zhenyu Chen, Sihan Li, Zhihong Zhao, and Yuming Zhou. 2013. A

clustering-based strategy to identify coincidental correctness in fault localization.

International Journal of Software Engineering and Knowledge Engineering 23, 05

(2013), 721–741.

[38] L. J. Morell. 1990. A Theory of Fault-Based Testing. IEEE Trans. Softw. Eng. 16, 8
(aug 1990), 844–857. https://doi.org/10.1109/32.57623

[39] Larry J. Morell. 1990. A theory of fault-based testing. IEEE Transactions on
Software Engineering 16, 8 (1990), 844–857.

[40] Andrew Jefferson Offutt and R. A. Demillo. 1988. Automatic Test Data Generation.
Ph. D. Dissertation. USA. AAI8904822.

[41] A. Jefferson Offutt and Stephen D. Lee. 1991. How Strong is Weak Mutation?.

In Proceedings of the Symposium on Testing, Analysis, and Verification (Victoria,

British Columbia, Canada) (TAV4). Association for Computing Machinery, New

York, NY, USA, 200–213. https://doi.org/10.1145/120807.120826

[42] A Jefferson Offutt and Stephen D Lee. 1994. An empirical evaluation of weak

mutation. IEEE Transactions on Software Engineering 20, 5 (1994), 337–344.

[43] Matthew Patrick, Manuel Oriol, and John A Clark. 2012. MESSI: Mutant eval-

uation by static semantic interpretation. In 2012 IEEE Fifth International Con-
ference on Software Testing, Verification and Validation. IEEE, 711–719. https:

//doi.org/10.1109/ICST.2012.161

[44] Raul Santelices and Mary Jean Harrold. 2011. Applying aggressive propagation-

based strategies for testing changes. In 2011 Fourth IEEE International Conference
on Software Testing, Verification and Validation. 11–20. https://doi.org/10.1109/

ICST.2011.46

[45] August Shi, Jonathan Bell, and Darko Marinov. 2019. Mitigating the Effects

of Flaky Tests on Mutation Testing. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis (Beijing, China) (ISSTA
2019). Association for Computing Machinery, New York, NY, USA, 112–122.

https://doi.org/10.1145/3293882.3330568

https://x-stream.github.io/
https://doi.org/10.1002/stvr.1696
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1696
https://books.google.com/books?id=58LeDQAAQBAJ
https://doi.org/10.1109/ICSTW.2019.00039
https://doi.org/10.1145/3425497
https://doi.org/10.1145/3425497
https://doi.org/10.1145/2931037.2948707
https://doi.org/10.1109/ISSRE.2009.14
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1109/C-M.1978.218136
https://doi.org/10.1109/32.92910
https://doi.org/10.1109/32.92910
https://doi.org/10.1145/3597926.3598090
https://doi.org/10.1145/3293882.3330559
https://doi.org/10.1109/ISSRE.2015.7381815
https://doi.org/10.1109/TSE.1982.235571
https://doi.org/10.1109/TSE.1982.235571
https://doi.org/10.1145/2610384.2610388
https://doi.org/10.1145/3092703.3092732
https://doi.org/10.1002/stvr.1480
https://doi.org/10.1109/TSE.2016.2597136
https://doi.org/10.1109/TSE.2016.2597136
https://doi.org/10.1145/3597926.3598149
https://doi.org/10.1145/3551349.3556952
https://doi.org/10.1145/3551349.3556952
https://doi.org/10.1145/1555860.1555862
https://doi.org/10.1145/2559932
https://doi.org/10.1109/32.57623
https://doi.org/10.1145/120807.120826
https://doi.org/10.1109/ICST.2012.161
https://doi.org/10.1109/ICST.2012.161
https://doi.org/10.1109/ICST.2011.46
https://doi.org/10.1109/ICST.2011.46
https://doi.org/10.1145/3293882.3330568

Ripples of a Mutation — An Empirical Study of Propagation Effects in Mutation Testing ICSE ’24, April 14–20, 2024, Lisbon, Portugal

[46] Thierry Titcheu Chekam,Mike Papadakis, Tegawendé F Bissyandé, Yves Le Traon,

and Koushik Sen. 2020. Selecting fault revealing mutants. Empirical Software
Engineering 25, 1 (2020), 434–487. https://doi.org/10.1007/s10664-019-09778-7

[47] J.M. Voas. 1992. PIE: a dynamic failure-based technique. IEEE Transactions on
Software Engineering 18, 8 (1992), 717–727. https://doi.org/10.1109/32.153381

[48] Xinming Wang, S. C. Cheung, W. K. Chan, and Zhenyu Zhang. 2009. Taming

coincidental correctness: Coverage refinement with context patterns to improve

fault localization. In Proceedings of the 31st International Conference on Software
Engineering (ICSE ’09). IEEE Computer Society, Washington, DC, USA, 45–55.

[49] MR Woodward and K Halewood. 1988. From weak to strong, dead or alive?

an analysis of some mutation testing issues. In Workshop on software testing,

verification, and analysis. IEEE Computer Society, 152–153.

[50] Yingfei Xiong, Dan Hao, Lu Zhang, Tao Zhu, Muyao Zhu, and Tian Lan. 2015.

Inner Oracles: Input-Specific Assertions on Internal States. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering (Bergamo, Italy)

(ESEC/FSE 2015). Association for Computing Machinery, New York, NY, USA,

902–905. https://doi.org/10.1145/2786805.2803204

[51] Xiaozhen Xue, Yulei Pang, and Akbar Siami Namin. 2014. Trimming Test Suites

with Coincidentally Correct Test Cases for Enhancing Fault Localizations. In

2014 IEEE 38th Annual Computer Software and Applications Conference. 239–244.
https://doi.org/10.1109/COMPSAC.2014.32

https://doi.org/10.1007/s10664-019-09778-7
https://doi.org/10.1109/32.153381
https://doi.org/10.1145/2786805.2803204
https://doi.org/10.1109/COMPSAC.2014.32

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Methodology: Scalable Analysis of Mutated Test Runs
	3.1 Key Concepts
	3.2 Detailed Steps within the Analysis

	4 Empirical Study
	4.1 Implemented Empirical Methodology
	4.2 Subject Programs
	4.3 Research Questions

	5 Results
	6 Discussions and Implications
	7 Threats to Validity
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

