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Summary
 An overview of the last submitted paper
 Other perspectives

 Current research
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AN OVERVIEW OF THE LAST 
SUBMITTED (SHORT) PAPER
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Short Paper
 Marinho, E. H., Ferreira, F., Fernandes, E., Diniz, J. P., 

and Figueiredo, E. “Resource Interaction Failures: A 
Challenge for SPL Community.” Submitted to the SPLC 
2024 Challenge Track.
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Introduction
 Mobile devices have a rich set of resources
 “Resource” refers to sensors, radios, and user-

controlled options
 User interaction with devices can enable or disable

the resources
 Unexpected application behavior can occur in

specific resource settings
 However, the testing of all input combinations is

impracticable
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Sampling Strategies
 Resource interactions are like Feature 

interactions
 Resource settings are 14-tuple of resource and 

state pairs
 Sampling strategies are alternatives for 

decreasing the testing effort
 Random (30), One Enabled (14), One 

Disabled (14), Most Enabled Disabled (2), 
Pairwise (8)
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Proposed Challenge
 SPLC participants must propose testing

strategies for mobile applications
 Taking resource interactions into account

 The failure detection capability and the
effectiveness must be higher than our baseline
 Increase the number of unique detected failures

and minimize the number of tested settings
 Solution efficiency (SE)
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Dataset
 20 Android applications
 14 target resources 
 Auto Rotate, Battery Saver, Bluetooth, Camera, 

Do Not Disturb, Location, Mobile Data, Wi-Fi, 
Accelerometer, Gyroscope, Light, Magnetometer, 
Orientation, Proximity

 Extended test suites
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Evaluation metrics
 Size metrics
 LOC
 Number of packages, classes, methods

 Test suite metrics
 LOC
 Number of test cases

 Declared resources
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Dataset Excerpt

NAME LOC #Test Cases Test LOC RESOURCES

AnkiDroid 158 K 164 2,770 Cam, MD, Wi-Fi
CovidNow 2 K 21 540 MD, Wi-Fi
Iosched 27 K 9 473 Loc, MD, Wi-Fi
Mixin-Messenger 168 K 160 3,732 BT, Cam, Loc, MD, Wi-Fi
Moonshot 0,455 K 28 464 MD, Wi-Fi
Radio-Droid 22 K 23 1,735 BT, MD, Wi-Fi
WordPress 347 K 115 3,674 Cam, MD, Wi-Fi
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BT - Bluetooth
Cam - Camera
Loc -  Location
MD - Mobile Data
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Test suite instrumentation
 Functional tests are the target
 Android APIs for interacting with the device

 Extension by means of UI Automator
 Each test class is extended with 

instrumentation code
 Before each test case the instrumentation code 

is executed
 Test reports are processed
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Test Reports
NAME FAILING 

SETTINGS
SOLUTION 
EFFICIENCY

#FAILURES

CovidNow 32 0.47 2
Lockwise 68 1.00 4
Mixin-Messenger 20 0.29 2
Nl-covid19 55 0.81 6
OwnTracks 68 1.00 3
PocketHub 4 0.06 1
SpaceXFollower 68 1.00 4
Threema 33 0.48 1
Vocable 24 0.35 7
WordPress 37 0.54 11
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Example of Use
 Settings are provided in CSV files with only 

enabled resources
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Example of Output
 Vocable is a communication tool for 

individuals who are speech impaired
 It uses the ARCore SDK to track the user's 

head movements
 To understand where the user is looking on the 

screen
 When both Mobile Data and Wi-Fi are 

disabled (verifyDefaultTextAppears test)
 ARCore fatal exception
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CURRENT RESEARCH
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Resource Interaction Faults
 Characterize faults behind the failures
 How to identify faulty classes?

 Failures are related to the test framework scope
 Android event-driven nature is a challenge for 

debugging activities

 Spectrum based Fault Localization
 Extension of our SBES 2023 paper
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Resource Interaction Faults
 Compare faults generated by traditional 

mutation operators and manually injected 
faults

 Faults injected using Bug Fix Patterns 
(Pan et al. 2009)
 Using the five most common Bug Fix Patterns 

(Campos and Maia 2017) 
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Bug fix patterns (Pan et al. 2009)
 Change of IF Condition Expression (IF-CC):

 Method Call with different actual parameter 
values (MC-DAP)
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Bug fix patterns – Parte 2
 Method Call with different number of 

parameters or different types of parameters 
(MC-DNP)

 Change of Assignment Expression (AS-CE)
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Bug fix patterns – Parte 3
 Addition of IF Precondition Check (IF-APC)
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Questions?
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