
Software Engineering Lab (LabSoft)
http://labsoft.dcc.ufmg.br/

Resource Interaction Failures in Mobile
Applications: A Challenge for the SPL

Community and Other Perspectives

Euler Marinho

Software Engineering Lab (LabSoft)
http://labsoft.dcc.ufmg.br/

22

Summary
 An overview of the last submitted paper
 Other perspectives

 Current research

Software Engineering Lab (LabSoft)
http://labsoft.dcc.ufmg.br/

AN OVERVIEW OF THE LAST
SUBMITTED (SHORT) PAPER

3

Software Engineering Lab (LabSoft)
http://labsoft.dcc.ufmg.br/

Short Paper
 Marinho, E. H., Ferreira, F., Fernandes, E., Diniz, J. P.,

and Figueiredo, E. “Resource Interaction Failures: A
Challenge for SPL Community.” Submitted to the SPLC
2024 Challenge Track.

4

Software Engineering Lab (LabSoft)
http://labsoft.dcc.ufmg.br/

55

Introduction
 Mobile devices have a rich set of resources
 “Resource” refers to sensors, radios, and user-

controlled options
 User interaction with devices can enable or disable

the resources
 Unexpected application behavior can occur in

specific resource settings
 However, the testing of all input combinations is

impracticable

Software Engineering Lab (LabSoft)
http://labsoft.dcc.ufmg.br/

Sampling Strategies
 Resource interactions are like Feature

interactions
 Resource settings are 14-tuple of resource and

state pairs
 Sampling strategies are alternatives for

decreasing the testing effort
 Random (30), One Enabled (14), One

Disabled (14), Most Enabled Disabled (2),
Pairwise (8)

6

Software Engineering Lab (LabSoft)
http://labsoft.dcc.ufmg.br/

Proposed Challenge
 SPLC participants must propose testing

strategies for mobile applications
 Taking resource interactions into account

 The failure detection capability and the
effectiveness must be higher than our baseline
 Increase the number of unique detected failures

and minimize the number of tested settings
 Solution efficiency (SE)

7

Software Engineering Lab (LabSoft)
http://labsoft.dcc.ufmg.br/

Dataset
 20 Android applications
 14 target resources
 Auto Rotate, Battery Saver, Bluetooth, Camera,

Do Not Disturb, Location, Mobile Data, Wi-Fi,
Accelerometer, Gyroscope, Light, Magnetometer,
Orientation, Proximity

 Extended test suites

8

Software Engineering Lab (LabSoft)
http://labsoft.dcc.ufmg.br/

Evaluation metrics
 Size metrics
 LOC
 Number of packages, classes, methods

 Test suite metrics
 LOC
 Number of test cases

 Declared resources

9

Software Engineering Lab (LabSoft)
http://labsoft.dcc.ufmg.br/

Dataset Excerpt

NAME LOC #Test Cases Test LOC RESOURCES

AnkiDroid 158 K 164 2,770 Cam, MD, Wi-Fi
CovidNow 2 K 21 540 MD, Wi-Fi
Iosched 27 K 9 473 Loc, MD, Wi-Fi
Mixin-Messenger 168 K 160 3,732 BT, Cam, Loc, MD, Wi-Fi
Moonshot 0,455 K 28 464 MD, Wi-Fi
Radio-Droid 22 K 23 1,735 BT, MD, Wi-Fi
WordPress 347 K 115 3,674 Cam, MD, Wi-Fi

10

BT - Bluetooth
Cam - Camera
Loc - Location
MD - Mobile Data

Software Engineering Lab (LabSoft)
http://labsoft.dcc.ufmg.br/

Test suite instrumentation
 Functional tests are the target
 Android APIs for interacting with the device

 Extension by means of UI Automator
 Each test class is extended with

instrumentation code
 Before each test case the instrumentation code

is executed
 Test reports are processed

11

Software Engineering Lab (LabSoft)
http://labsoft.dcc.ufmg.br/

Test Reports
NAME FAILING

SETTINGS
SOLUTION
EFFICIENCY

#FAILURES

CovidNow 32 0.47 2
Lockwise 68 1.00 4
Mixin-Messenger 20 0.29 2
Nl-covid19 55 0.81 6
OwnTracks 68 1.00 3
PocketHub 4 0.06 1
SpaceXFollower 68 1.00 4
Threema 33 0.48 1
Vocable 24 0.35 7
WordPress 37 0.54 11

12

Software Engineering Lab (LabSoft)
http://labsoft.dcc.ufmg.br/

Example of Use
 Settings are provided in CSV files with only

enabled resources

13

Software Engineering Lab (LabSoft)
http://labsoft.dcc.ufmg.br/

Example of Output
 Vocable is a communication tool for

individuals who are speech impaired
 It uses the ARCore SDK to track the user's

head movements
 To understand where the user is looking on the

screen
 When both Mobile Data and Wi-Fi are

disabled (verifyDefaultTextAppears test)
 ARCore fatal exception

14

Software Engineering Lab (LabSoft)
http://labsoft.dcc.ufmg.br/

CURRENT RESEARCH

15

Software Engineering Lab (LabSoft)
http://labsoft.dcc.ufmg.br/

Resource Interaction Faults
 Characterize faults behind the failures
 How to identify faulty classes?

 Failures are related to the test framework scope
 Android event-driven nature is a challenge for

debugging activities

 Spectrum based Fault Localization
 Extension of our SBES 2023 paper

16

Software Engineering Lab (LabSoft)
http://labsoft.dcc.ufmg.br/

Resource Interaction Faults
 Compare faults generated by traditional

mutation operators and manually injected
faults

 Faults injected using Bug Fix Patterns
(Pan et al. 2009)
 Using the five most common Bug Fix Patterns

(Campos and Maia 2017)

17

Software Engineering Lab (LabSoft)
http://labsoft.dcc.ufmg.br/

Bug fix patterns (Pan et al. 2009)
 Change of IF Condition Expression (IF-CC):

 Method Call with different actual parameter
values (MC-DAP)

18

Software Engineering Lab (LabSoft)
http://labsoft.dcc.ufmg.br/

Bug fix patterns – Parte 2
 Method Call with different number of

parameters or different types of parameters
(MC-DNP)

 Change of Assignment Expression (AS-CE)

19

Software Engineering Lab (LabSoft)
http://labsoft.dcc.ufmg.br/

Bug fix patterns – Parte 3
 Addition of IF Precondition Check (IF-APC)

20

Software Engineering Lab (LabSoft)
http://labsoft.dcc.ufmg.br/

Questions?

	Resource Interaction Failures in Mobile Applications: A Challenge for the SPL Community and Other Perspectives
	Summary
	An overview of the last submitted (SHORT) paper
	Short Paper
	Introduction
	Sampling Strategies
	Proposed Challenge
	Dataset
	Evaluation metrics
	Dataset Excerpt
	Test suite instrumentation
	Test Reports
	Example of Use
	Example of Output
	CURRENT RESEARCH
	Resource Interaction Faults
	Resource Interaction Faults
	Bug fix patterns (Pan et al. 2009)
	Bug fix patterns – Parte 2
	Bug fix patterns – Parte 3
	Questions?

