

DevOps and ci/cd Pipeline: exploring the
edge computing landscape

Doctoral Defense Preview

Igor Muzetti Pereira

Advisors: Tiago Carneiro
Eduardo Figueiredo

June 21, 2024

Table of Contents

● Introduction

● Theoretical Reference

● Experimental Procedures

● Results

● Threats to Validity

● Conclusion

● Future Work

2

Introduction

3

Contextualization
● Organizations and communities developing IoT systems rely on

software components as one of the main assets in their products
● When the systems become more complex, these entities need to adapt

[Luz et al., 2019]
● These entities have teams that develop hardware that traditionally

uses rigorous and plan-oriented methodologies [Lindgren and Münch,
2016]

● Moreover, they have software development and operations teams that
are more familiar with to agile methodologies

4

Contextualization
● On one hand, an IoT system project requires ongoing cooperation between

development, operations, and hardware teams
● On the other hand, there may be resistance in hardware teams to using

agile practices in their activities
● IoT systems are composed of addressable objects (things) that interact

with each other and with users, detecting and processing data to achieve
specific goals [Jacobson et al., 2017]

● These systems have different embedded components, leading to the
creation and use of architectural patterns for various applications [Wu
et al., 2010]

5

Problem

● IoT systems have several components and require the integration
of multiple experts and development approaches

● Software engineering must adapt to ensure the quality of IoT
systems

● Component variability makes choosing technologies and practices
for IoT embedded projects complex

● The specific challenges of adapting the CI/CD pipeline for IoT
embedded systems are not understood

6

Motivation

● The CI/CD pipeline can expedite build, test, and delivery, improving
quality and time to release

● Efficient organizational structures are necessary to improve
communication and delivery speed in IoT embedded systems

● The integration of hardware, software, and infrastructure is not just a
component but a critical pillar of success in IoT systems

● Understanding and overcoming the challenges of CI/CD in IoT embedded
systems can provide valuable insights for practitioners and researchers,
advancing software engineering in this domain

7

General Goal

Investigate the challenges of software development, maintenance
and continuous delivery

for the purpose to clarify to software engineering community

with respect to proposing approaches to overcome these
challenges

from the point of view of researchers, professionals and
practitioners

in the context of IoT embedded systems.

8

● Identify DevOps practices and tools used in IoT embedded projects
reported in the literature and by professionals

● Elucidate teams’ benefits and challenges when adopting DevOps in IoT
embedded projects

● Select a subset of practices and tools that promote the quality of
FLOSS (Free/Libre Open-Source Software) projects from these domains
during DevOps adoption

● Verify developers performance when using these practices and tools on a
project

9

Specifics Goals

Theoretical Reference

10

Background

● DevOps is a collaborative and multidisciplinary organizational
effort to automate the continuous delivery of new software updates
while guaranteeing their correctness and reliability [Leite et al.
2019]

● The CI/CD pipeline is an automated sequence of actions that involves
source code from the machine of the developer to the target device
that is in production and available to system users

● IoT embedded systems are hardware and software components that
execute continuously and react to events in the environment

11

Background
● We are considering an architecture for IoT systems with 4 layers. Each layer

refers to different levels and plays a specific role in data processing and
management [Zhang et al., 2018] [Kumar and Agrawal, 2023]
– The sensors and devices layer is closest to the physical environment
– The edge layer processing data close to the source location, reducing

latency, and relieving the load on the network
– The fog layer provides more advanced computing, storage, and communication

resources, typically on local servers
– The cloud layer handles intensive processing and long-term storage and

provides advanced services like big data analytics, machine learning, and web
services

12

Background

● GitHub is a source code hosting platform for version control and
collaboration. It allows developers to work together on projects
in a geographically distributed manner

● GitHub Actions enables task automation involving several
components, such as PR, commits, and issues, that are applied to
facilitate the automation of builds, tests, deliveries, deploys,
and communication

13

Related Works

● CI/CD in different contexts, such as cloud, IoT, CPS, and edge and
fog computing

● These studies reveal challenges, practices, benefits, and trends in
applying CI/CD in complex software development environments

● Some key points include heterogeneity in continuous delivery
workflows, automation, and tools, testing in simulated versus real
environments, hardware and software management, balancing regulatory
compliance and agile development, and flexible and interdisciplinary
approaches

14

Experimental Procedures

15

Steps of research experimental procedures

16

Systematic
Literature
Review

Exploratory
Study

Interviews

Questionnaire

Mining
Software

Repository

Quasi-
Experiment

Search of the SRL

17

Data Source Address Results

IEEE Xplore https://
ieeexplore.ieee.org/

120

ACM Digital Library https://dl.acm.org/ 402

Science Direct https://
www.sciencedirect.com/

360

Springer https://
link.springer.com/

567

Wiley https://
onlinelibrary.wiley.com/

264

Total 1713

((“internet of things” OR iot) AND (“devops”))

Search Results

18

Exploratory Study Design

19

Interview Questionnaire

91 professional invited 60 professional invited

31 responded 30 responded

Free and informed consent forms First section about participant’s
backgroud

Encouraged to speak freely Second section with close questions

Pilot study

Google Meet and Audacity

Lasted between 30-50 minutes

Each interview was transcribed

Open coding for analysis

Background of Participants

20

Experience Interview Questionnaire

Less than one year 0% 3.4%

Between one and three years 0% 10.3%

Between three and five years 32.2% 20.7%

More than five years 67.8% 65.5%

Area

Development 25.8% 33.3%

Operation 48.4% 36.7%

Hardware 25.8% 30.0%

most
are

experienced

balance
among the

areas

Mining Software Repository (MSR)
● We selected and quantitatively analyzed:

– 11 metrics from repositories of 25 IoT-related projects
● Popularity: stars, forks, issues and watchers
● Delivery: release, commits, branches, closed and merged PR, closed but not merged PR, and open PR
● Community: contributors, truck factor, and one-time contributor

● Used the K-Means to clustering and understanding the characteristics of the
repositories

● Explored evidence of use in GHA workflows (YAML files)

● Applied open coding to issues to understand how these communities discuss the CI/CD
pipeline

21

Quasi-Experiment

22

Results

23

24

RQ1. What are the DevOps topics investigated in
the context of IoT software systems?

RQ1. What are the DevOps topics investigated in
the context of IoT software systems?

25

plan communication

develop architecture
languages and frameworks
ide
library and toolkit
storage
protocols and communications formats
operation system
hardware
servers
network
build and interpreter
testing
version control
container
continuous integration

deliver continuous delivery / deployment
infrastructure as code
source code hosting

operate measurement
processing and analysis

Technologies

26

RQ2. What are the benefits of adopting DevOps in
IoT software systems?

RQ2. What are the benefits of adopting DevOps in
IoT software systems?

Benefit Category

B01 DevOps framework proposals for IoT

B02 Use of cloud and fog computing

B03 Economics with the use of containers

B04 Microservices induce the formation of small teams

B05 Reference architectures DevOps to IoT systems

27

RQ3. What the reported challenges of adopting
DevOps in IoT systems?

RQ3. What the reported challenges of adopting
DevOps in IoT systems?

Challenge Category

C01 Manage quality of service

C02 Select devices

C03 Continuous feedback between teams

C04 Apply a deployment pipeline

C05 Continuous documentation

C06 Need for e-shaped professionals

28

29

RQ1. What are the differences in developing embedded
systems with a traditional process compared to a
process that seeks continuous delivery and develops
IoT systems?

RQ1. What are the differences in developing embedded
systems with a traditional process compared to a
process that seeks continuous delivery and develops
IoT systems?

● Some companies develop their prototypes;
others even import its

● The final hardware is mainly purchased
from China

● Every IoT solution is different from
another

● Use of microservices
● Use of IaC to obtain stable environments
● Different delivery/deployment strategies

answers more related to
technical and business aspects

30

RQ2. Which quality practices are most used in the
pursuit of continuous delivery in developing IoT
systems?

RQ2. Which quality practices are most used in the
pursuit of continuous delivery in developing IoT
systems?

31

RQ3. How are perceived challenges faced in
the quest for continuous delivery?
RQ3. How are perceived challenges faced in
the quest for continuous delivery?

32

RQ3. How are perceived challenges faced in
the quest for continuous delivery?
RQ3. How are perceived challenges faced in
the quest for continuous delivery?

33

RQ3. How are perceived challenges faced in
the quest for continuous delivery?
RQ3. How are perceived challenges faced in
the quest for continuous delivery?

34

RQ1. What are the characteristics of FLOSS
IoT-related projects?
RQ1. What are the characteristics of FLOSS
IoT-related projects?

35

RQ1. What are the characteristics of FLOSS
IoT-related projects?
RQ1. What are the characteristics of FLOSS
IoT-related projects?

36

RQ1. What are the characteristics of FLOSS
IoT-related projects?
RQ1. What are the characteristics of FLOSS
IoT-related projects?

Spearman: 0.825
Silhouette: 0.57

37

RQ1. What are the characteristics of FLOSS
IoT-related projects?
RQ1. What are the characteristics of FLOSS
IoT-related projects?

Spearman: 0.909
Silhouette: 0.59

38

RQ2. How do FLOSS IoT-related projects
structure their CI/CD pipeline?
RQ2. How do FLOSS IoT-related projects
structure their CI/CD pipeline?

Event %Workflows %Repositories

push 74.63% 72.00%

pull_request 71.98% 72.00%

release 25.82% 44.00%

schedule 15.93% 36.00%

workflow_dispatch 10.99% 32.00%

issues 9.34% 28.00%

pull_request_target 4.40% 16.00%

workflow_run 2.20% 12.00%

repository_dispatch 1.65% 4.00%

workflow_call 1.65% 4.00%

issue_comment 1.10% 8.00%

pull_request_review 0.55% 4.00%

182 YAML files

39

RQ2. How do FLOSS IoT-related projects
structure their CI/CD pipeline?
RQ2. How do FLOSS IoT-related projects
structure their CI/CD pipeline?

Action %Steps %Repositories

actions/checkout 47.17% 100.00%

actions/upload-
artifact

12.34% 52.63%

actions/setup-python 8.74% 68.42%

actions/cache 7.84% 31.58%

actions/download-
artifact

3.47% 26.32%

codecov/codecov-
action

1.03% 15.79%

actions/setup-node 0.90% 10.53%

docker/login-action 0.77% 26.32%

docker/build-push-
action

0.77% 21.05%

docker/setup-qemu-
action

0.77% 15.79%

75 Actions out of 766 Steps

40

RQ2. How do FLOSS IoT-related projects
structure their CI/CD pipeline?
RQ2. How do FLOSS IoT-related projects
structure their CI/CD pipeline?

Action category %Actions

Continuous
Integration

26.67%

Utilities 20.00%

Deployment 6.67%

Dependency
Management

5.53%

Testing 5.53%

Project Management 5.53%

Code Quality 4.00%

Code Review 2.67%

Open Source
Management

2.67%

Chat 2.67%

Action category %Actions

Security 2.67%

Publishing 1.33%

Container CI 1.33%

Uncatecorised 13.33%

Total 100.00%

41

RQ3. What is discussed in FLOSS IoT-related
projects communities about the CI/CD
pipeline?

RQ3. What is discussed in FLOSS IoT-related
projects communities about the CI/CD
pipeline?

Categories of the Issues #Issues %Issues

Difficulties or challenges 83 44.62%

Improvement 44 23.66%

Maintenance 32 17.20%

Request or suggestion 27 14.52%

Total 186 100.00%

42

RQ1. How does prior CI/CD knowledge impact the
effort to configure, use, and understand a
CI/CD pipeline in an IoT embedded project?

RQ1. How does prior CI/CD knowledge impact the
effort to configure, use, and understand a
CI/CD pipeline in an IoT embedded project?

Statistic Table - Mann-Whitney - Time in Minutes

With skills Without skills

med min max med min max p-value

Task 1 13 3 60 25 4 90 0.00072

Task 2 9 1 26 12 3 42 0.00220

Task 3 6 2 20 8 3 41 0.00203

Task 1: Set up GitHub Actions Task 2: Create a PR with a bug Task 3: Fix a PR

43

RQ1. How does prior CI/CD knowledge impact the
effort to configure, use, and understand a
CI/CD pipeline in an IoT embedded project?

RQ1. How does prior CI/CD knowledge impact the
effort to configure, use, and understand a
CI/CD pipeline in an IoT embedded project?

Statistic Table - Mann-Whitney - Degree

With skills Without skills

mod min max mod min max p-value

Task 1 0 0 4 1 0 4 0.00218

Task 2 1 0 3 2 0 4 0.00022

Task 3 0 0 2 1 0 4 0.00251

Statistic Table - Mann-Whitney - Degree

With skills Without skills

mod min max mod min max p-value

File 1 2 0 3 2 1 4 0.00000

File 2 1 0 3 2 0 4 0.02778

File 3 0 0 2 1 0 4 0.00338

44

RQ2. What were developers' perceptions about
the setting, use, and understanding of the
CI/CD tasks?

RQ2. What were developers' perceptions about
the setting, use, and understanding of the
CI/CD tasks?

Developers insights
Don’t know GitHub Actions Know GitHub Actions

Novelties (with skills) - 38 Observations (with skills) - 8

Learning (without skills) - 52

Performance (without skills) - 20

Doubts (without skills) - 50

Barriers (without skills) - 53

Threats to Validity

45

Threats to Validity

● Construction Validity:
– SLR: Selection of multiple electronic data sources to ensure

comprehensiveness

– Exploratory Study: Use of a structured interview guide and external
validation

– MSR: Documentation of choices and reasons, recognizing limitations in
choosing the GitHub Actions platform

– Quasi-Experiment: Selection of Software Engineering students as
subjects, justified by previous studies

46

Threats to Validity

● Internal Validity:
– SLR: Collaborative approaches to increase objectivity in selecting and

interpreting studies

– Exploratory Study: Use of semi-structured interviews to minimize bias

– MSR: Justifications of methodological choices following recommendations

– Quasi-Experiment: Document the process and follow guidelines to ensure
the validity of inferences

47

Threats to Validity

● External Validity:
– SLR: Limitations in the representativeness of selected studies

– Exploratory Study: Limitations in the sample

– MSR: Scope limited to IoT-related projects; clear criteria for future
studies

– Quasi-Experiment: Apply appropriate statistical tools and maintain
consistency in results

48

Threats to Validity

● Conclusion Validity:
– SLR: Consensus among researchers on interpretations

– Exploratory Study: Collective participation in data analysis and
discussion of results

– MSR: Open coding is used to make raw data available

– Quasi-Experiment: Detailed presentation of results and encouragement of
replication

49

Conclusion

50

Summary - SLR
● Practices and Technologies: Various practices and technologies

emphasize edge and fog computing
● Infrastructure: Cloud computing and infrastructure as code are

emerging trends
● Deployment Strategies: Canary Release, Blue-Green Deployment, and

reference architectures
● Challenges Identified: The impact of these challenges, including

defining and monitoring QoS metrics, communication between teams,
and resistance to agile practices, is significant, underlining the
urgency of addressing them

51

Summary - Exploratory

● DevOps Practices: Generates agility in hardware and firmware
development

● Cultural Aspects: Shorter delivery cycles and adaptation to each
project's specific demands are needed

● Quality Practices: Create APIs, conduct code reviews, and
develop programming guidelines

● Challenges: Incomplete adoption of practices such as clean code
and testing by hardware and firmware teams

52

Summary - MSR

● CI/CD adoption: Mixed picture with variation in workflow
adoption

● Tools: The importance of Docker and GitHub Actions is growing
● Gaps: Lack of third-party Actions specific to embedded

systems

53

Summary - Quasi-Experiment
● Impact of Prior Knowledge: Significant differences in effort and

understanding between developers with and without prior CI/CD
skills

● Benefits of Experience: Experienced developers with prior CI/CD
knowledge spend less time and find tasks easier, demonstrating
their capability and efficiency

● Beginning Developers: Faced more challenges and spent more time
● Importance of Training: Ongoing training in CI/CD is needed to

face emerging technological challenges

54

Summary - Quasi-Experiment

● Efficiency of GitHub Actions: Praised by experienced
developers

● Challenges for Beginners: Interpretation of source code,
use of Git and GNU/Linux systems

● Guidance from Researchers: Essential to help overcome
obstacles and understand concepts

55

Summary

● CI/CD Efficiency and Effectiveness:
– Crucial to the success of modern software projects

● Competitive Advantage:
– Overcoming barriers and implementing robust CI/CD practices

can uniquely position your software projects, providing a
significant competitive advantage

56

Summary

● Investment in Training:
– It is essential to face current challenges and ensure future

success in developing IoT embedded systems

● Recommendation:
– Look for solutions adapted to the specific needs of each

project and promote practical learning

57

Contributions - SLR
● Identification of Gaps:

– Future experiments are needed to evaluate the operationalization of CI/CD in
IoT embedded systems

● Technology Analysis:

– A meticulous examination of detailed technology selection requirements,
including documentation, active community, and licensing, has been conducted

● DevOps Challenges:

– Discuss topics, technologies, benefits, and challenges specific to IoT
projects, strengthening knowledge for DevOps adoption

58

Contributions - Exploratory
● Integration of DevOps Practices:

– Comprehensive view of the problems professionals and organizations face

● Communication and Management:
– Communication between professionals with different skills and support from top

management is important

● Practices and Technologies:
– Proposing the use of asynchronous communication, continuous monitoring, and careful

technology selection, with the promise of improved efficiency and productivity

● Data and Metadata:
– Use of solutions in production for improvements and continuous learning

59

Contributions - MSR
● CI/CD adoption:

– Identification of CI/CD practice in most FLOSS IoT projects, with a predominance
of GitHub Actions

● Understanding the user Profiles:
– Delineating the distinct user profiles for real-time operating system (RTOS)

projects and development tools (DT), highlighting their unique needs and
challenges

● Pipeline Challenges:
– Main concerns related to difficulties in using the pipeline and the need for

detailed documentation

60

Contributions - Quasi-Experiment
● Developer Perceptions:

– Divergences in experiences with CI/CD, highlighting motivation and discovery
of new resources

● Technical Challenges:
– Recognition of pipeline efficiency but technical challenges in executing the

steps
● Education and Mentoring:

– The empowering role of practical and adaptive training approaches, with the
guiding hand of mentors, is fundamental in motivating and developing CI/CD
skills

61

Contributions
● Pereira, I.M.; Carneiro, T. G. S.; Figueiredo, E. 2021. A systematic review on the use of

DevOps in internet of things software systems. Proceedings of the 36th Annual ACM Symposium
on Applied Computing (SAC). pp. 1569–1571. DOI: 10.1145/3412841.3442126.

● Pereira, I.M.; Carneiro, T. G. S.; Figueiredo, E. 2021. Understanding the context of IoT
software systems in DevOps. IEEE/ACM 3rd International Workshop on Software Engineering
Research and Practices for the IoT (SERP4IoT). pp. 13-20. DOI:
10.1109/SERP4IoT52556.2021.00009.

● Pereira, I.M.; Carneiro, T. G. S.; Figueiredo, E. 2021. Main Differences of DevOps on IoT
Systems. XXXV Brazilian Symposium on Software Engineering (SBES). pp. 315–319. DOI:
10.1145/3474624.3474630.

● Pereira, I.M.; Carneiro, T. G. S.; Figueiredo, E. 2021. Investigating Continuous Delivery on
IoT Systems. XX Brazilian Symposium on Software Quality (SBQS). pp. 1–10. DOI:
10.1145/3493244.3493261.

62

Contributions

● Analysing the CI/CD Pipeline in FLOSS Repositories of IoT-
Related Projects. SUBMITTED TO JUCS - Journal of Universal
Computer Science.

● Manipulating a CI/CD Pipeline in an IoT Embedded Project: A
Quasi-Experiment. SUBMITTED TO JSEP - Journal of Software:
Evolution and Process.

63

Future Work

64

Future Work

● Expand the scope of results with additional case studies and
experiments to validate tools, people, and solutions

● Evaluate different tools used in IoT embedded projects, focusing on
ease of use, hardware integration, and task automation effectiveness

● Develop guidelines and best practices for integrating security into IoT
embedded projects, addressing data protection and vulnerabilities

● Conduct experimental research to evaluate the effects of training in
CI/CD practices on developers' productivity, quality, and satisfaction
in IoT embedded project teams

65

References
● LUZ, W. P., PINTO, G., BONIFÁCIO, R. “Adopting DevOps in the real world: A theory, a model, and a case

study”, Journal of Systems and Software, v. 157, pp. 110384, 2019.

● LINDGREN, E., MÜNCH, J. “Raising the odds of success: the current state of experimentation in product
development”, Information and Software Technology, v. 77, pp. 80–91, 2016.

● JACOBSON, I., SPENCE, I., NG, P.-W. “Is There a Single Method for the Internet of Things? Essence can keep
software development for the IoT from becoming unwieldy”, Queue, v. 15, n. 3, pp. 25–51, 2017.

● WU, M., LU, T.-J., LING, F.-Y., et al. “Research on the architecture of Internet of Things”. In:
International Conference on Advanced Computer Theory and Engineering (ICACTE), v. 5, pp. V5–484–V5–487,
2010.

● LEITE, L., ROCHA, C., KON, F., et al. “A Survey of DevOps Concepts and Challenges”, ACM Computing Surveys,
v. 52, n. 6, 2019.

● ZHANG, D., CHAN, C. C., ZHOU, G. Y. “Enabling Industrial Internet of Things (IIoT) towards an emerging
smart energy system”, Global Energy Interconnection, v. 1, n. 1, pp. 39–47, 2018. ISSN: 2096-5117.

● KUMAR, R., AGRAWAL, N. “Analysis of multi-dimensional Industrial IoT (IIoT) data in Edge–Fog–Cloud based
architectural frameworks : A survey on current state and research challenges”, Journal of Industrial
Information Integration, v. 35, pp. 100504, 2023. ISSN: 2452-414X.

66

Acknowledgements

67

68

THANK YOU!

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68

