
The Use of Large Language Models for Software
Refactoring

Henrique Nunes

Laboratory of Software Engineering (Labsoft) - Computer Science Department
(UFMG)

August 9th, 2024

1 / 26



Outline

SCAM submitted paper

Current Work

2 / 26



SCAM submitted paper: context

Maintainability is crucial in software engineering, affecting cost,
quality, and development.

LLMs show promise in coding, but real-world projects challenge
their effectiveness.

The lack of consensus on maintainability tools highlights the
potential of LLMs to automate fixes.

3 / 26



SCAM submitted paper: objective

Our study assesses LLMs’ effectiveness and limitations in fixing
software maintainability in real-world projects.

We use SonarQube to detect and Visual Studio Copilot to fix 127
maintainability issues in 10 GitHub Java repositories.

We conducted a human evaluation with 55 participants to evaluate
the readability of 52 LLM-generated solutions.

4 / 26



SCAM submitted paper: research questions

▶ RQ1. To what extent can an LLM fix maintainability issues?

▶ RQ2. To what extent do developers find LLM solutions more
readable?

5 / 26



SCAM submitted paper: study design

Figure 1: Steps to evaluate if LLM can automatically fix maintainability
issues.

6 / 26



SCAM submitted paper: selected projects

Projects and Versions #Issues Samples Stars Contributors
Apollo 2.2.0 119 6 28.8k 149
Byte Buddy 1.14.13 317 11 6.1k 94
Google Java Format 1.21.0 101 11 5.4k 90
Google Jimfs 1.3.0 47 6 2.4k 26
Google Guava 33.0.0 782 16 2.4k 304
Google Guice 7.0.1 173 14 12.4k 78
Jitwatch 1.4.9 365 24 3k 32
Jsoup 1.18.1 171 19 10.7k 107
Zxing 3.5.4 264 16 32.3k 125
Webmagic 0.10.1 107 4 11.3k 54

total 2,446 127

7 / 26



SCAM submitted paper: selected issues
Acronyms Rules Issues Projects

Coverage

CCM
Cognitive Complexity of methods should
not be too high 26 9

GET
Generic exceptions should never be
thrown 13 6

MIS
Mergeable if statements should be
combined 9 5

CCO
Sections of code should not be commented
out 13 6

SLD String literals should not be duplicated 19 7
TON Ternary operators should not be nested 8 5
TUT Track uses of "TODO" tags 16 6

TBS
Two branches in a conditional structure
should not have exactly the same
implementation

5 3

UAR Unused assignments should be removed 8 3

UMP
Unused method parameters should be
removed 10 5

total 127
8 / 26



SCAM submitted paper: prompt design

Figure 2: Copilot Chat with a prompt example and solution explanation.

9 / 26



SCAM submitted paper: build errors

Figure 3: Build errors for the 127 rules violation.

From the 127 samples of the study, 111 methods were changed by
LLM.

10 / 26



SCAM submitted paper: type errors

Figure 4: Types of the 42 build errors by the type of error.

11 / 26



SCAM submitted paper: type errors detailed

37.84% of the methods did not pass through the build process:

▶ 71.43% have incorrect syntax (compilation error)

▶ 19.05% have semantic problms (tests error)

▶ 9.52% have code style violation (checkstyle evaluation)

12 / 26



SCAM submitted paper: fixed issues

rules fixed not fixed degraded
CCO 9 0 0
TON 6 0 0
UAR 3 0 0
MIS 4 1 0
CCM 7 2 1
TBS 2 1 0
TUT 4 2 2
GET 3 3 1
SLD 3 12 2
UMP 0 1 0
total 41 22 6

13 / 26



SCAM submitted paper: introduced issues

dataset id initial issue inserted issues

6 TUT
Track uses of TODO tags;
The diamond operator ("⟨⟩") should be used.

11 SLD
Unused local variables should be removed;
Unused assignments should be removed.

19 CCM Raw types should not be used.

37 SLD
Local variables should not be declared
and then immediately returned or thrown.

67 TUT Track uses of TODO tags.
74 GET Generic exceptions should never be thrown.

14 / 26



SCAM submitted paper: 8 methods that failed in tests

dataset id rule result
18 Unused assignments should be removed not fixed

20
Cognitive Complexity of methods should not
be too high fixed

53
Cognitive Complexity of methods should not
be too high fixed

71
Cognitive Complexity of methods should not
be too high fixed

118 Mergeable if statements should be combined fixed

125
Two branches in a conditional structure should
not have exactly the same implementation fixed

126 Unused assignments should be removed not fixed
141 Unused assignments should be removed fixed

15 / 26



SCAM submitted paper: RQ1. answer

Out of the 111 maintainability issues:

▶ 41 methods (36.94%) were fixed

▶ 70 (63.06%) methods that did not have the maintainability
issues fixed:
▶ 42 (37.84% from the 111) failed in build analysis
▶ 22 (19.82%) did not fix the issues but did not have errors or

introduced new issues
▶ 6 (5.40%) did not have errors and introduced new

maintainability issues.

16 / 26



SCAM submitted paper: human evaluation (votes)

Figure 5: Proportion of answers by methods comparisons

17 / 26



SCAM submitted paper: RQ2. answer

Out of 52 pairs of methods evaluated by 55 developers:
▶ 31 (59.7%) considered the method with LLM solution more

readable than the original method
▶ 11 (21.1%) found the original method more readable.
▶ 5 (9.6%) deemed both methods equivalent
▶ 5 (9.6%) cases, the comparison resulted in a draw

18 / 26



SCAM submitted paper: human evaluation (winners)

Number of times when an option wins a comparison by the rules:

rules original method LLM solution equivalent draw
CCM 0 9 0 0
GET 1 1 1 1
MIS 0 2 0 0
CCO 2 4 1 1
NDL 1 1 0 1
SLD 5 7 1 1
TON 0 2 0 0
TUT 2 3 1 1
TBS 0 1 0 0
UAR 0 1 1 0

Organizing the comparisons by types of rule violations, the LLM
solution answer is the most voted for 8 (80%) rules, in the other 2
(20%) rules there was a draw.

19 / 26



SCAM submitted paper: Conclusions

About LLM limitation:
▶ LLM might miss method scopes, even with IDE integration.
▶ LLM can fix maintenance issues without breaking syntax, but

may change method behavior.
▶ LLM might not fix all issues in a method, even if it resolves

the one mentioned.
▶ LLM may prioritize fixing an issue over maintainability,

potentially introducing new issues.

LLMs show potential to improve code readability and fixing
maintainability issues, but their effectiveness is limited.

20 / 26



Current Work: read recent LLM papers
Pomian et. al. (FSE 24): A tool that ranks LLM refactoring
suggestions and provides high-quality options to developers.

Choi et. al. (SSBSE 24 co-located in FSE 24): proposes an
iterative project-level code refactoring to reduce the Cyclomatic
Complexity.

Shirafuji et. al. (APSEC 23): The study proposes a method for
selecting the best-suited code refactoring examples to be used for
few-shot prompts.

Al Omar et. al. (MSR 24): The study evaluates developers
refactoring prompts.

White al. (Book 2023): A book that discusses the use of prompt
design.

21 / 26



Current Work: read recent surveys

Fan et al. (ICSE 2023) - Future of Software Engineering:
▶ LLMs could assist developers with the explanation and

documentation of design patterns.
▶ Utilize few-shot learning for code refactoring.

Nyirongo et. al. (Arxiv, 2024) - Survey of Deep Learning for
Refactoring:
▶ Evaluate different method-level refactorings.
▶ Use industrial datasets for better generalization.
▶ Assess the effectiveness of refactoring improvements.

22 / 26



Current Work: similarities between studies

Utilize several suggestions from LLMs.

Human intervention is required.

The few-shot technique is very common.

Most proposals focus on reducing complexity.

Most refactoring occurs at the method level.

The Extract Method and Move Method are the most explored
techniques.

23 / 26



Current Work: problem

Context
▶ Developers have intensively adopted Large Language Models

(LLMs) for different software engineering tasks.
▶ Most refactoring studies using LLMs are focused on using

prompt engineering techniques, like few-shot learning, to
improve complex methods.

Problems
▶ These studies are promising but need many LLM

suggestions to achieve a correct program transformation from
syntactic and semantic points of view.

▶ Furthermore, unlike other techniques, Extract Method and
Move Method have been extensively explored.

24 / 26



Current Work: objectives

The objective of our study is...
▶ Option 1: Reduce LLM suggestions to achieve viable

refactoring.
▶ Option 2: Explore different types of refactoring methods.
▶ Option 3: Evaluate human behavior using prompt techniques.

25 / 26



Thank you!

Henrique Gomes Nunes

henrique.mg.bh@gmail.com

26 / 26


	SCAM submitted paper
	Current Work

