
A systematic literature review of code smell detection

tools for JavaScript systems

Saymon Souza

08/11/2024

Code Smells

● A code smell is any symptom in the source code of a program that possibly indicates

a problem.

o While this concept originally, first introduced by Fowler, applied to code that broke the

principles of object-oriented programming, it soon expanded to include more languages

and programming paradigms.

2

JavaScript

● JavaScript is an interpreted and dynamically typed programming language that stands

out year after year in popularity surveys due to its ability to adapt to different

contexts.

o Due to this flexibility, various challenges arise in maintaining the quality of software built

with this language.

3

Automated detection tools

● More and more automated tools are emerging to reduce the manual effort needed to

prevent and correct code smells.

o For the JavaScript language, for example, tools like JSNose, JSHint, and JSLint are part of

the technological toolkit used by development teams around the world.

4

Goal

● Although the number of automated code smell detection tools for JavaScript

continues to grow, there is still a need for a comprehensive study that analyzes the

key characteristics of each tool.

o This paper aims to conduct a systematic literature review (SLR) to fill this gap in the

literature.

5

Research questions

RQ1: What is the publication landscape of code smell detection tools in JavaScript since

the release year of the language?

RQ2: What code smell detection tools were published so far and what are their main

features?

6

Systematic literature review

7

● The systematic literature review process used was based on the guidelines proposed

by Kitchenham .

○ This process involves three main stages: planning, conducting and reporting.

[1] Barbara Kitchenham and Stuart Charters. 2007. Guidelines for performing systematic literature reviews

in software engineering. TechnicalReport EBSE-2007-01. Keele University and University of Durham.

[1]

Systematic literature review

8

● The search string was created taking into consideration some variations for

identifying the code smell expression, as well as JavaScript.

○ It was also considered that, for this work, it should include a term to filter for detection

tools.

Systematic literature review

9

● This string was used to query primary studies in the Scopus database based on their

metadata.

Systematic literature review

10

● At first 360 primary studies were found, but most of it would not fit this work, so the

following filtering criteria were used:

Systematic literature review

11

Total Papers: 360

ACM

82

IEEE

78

Scopus

192

Springer

82

Phase 1: Duplicate

removal

Approved Papers: 312

Phase 2: Metadata

reading

Approved Papers: 24

Phase 3: Full Paper

Reading

Approved Papers: 15

Phase 4: Snowballing

Approved Papers: ??

Systematic literature review

12

● With these criteria, a manual checking on the primary studies resulted in 15

remaining papers, all of them proposing a tool that could evaluate a JavaScript

system and check for one or more code smells.

o We ran our final search string on August 13, 2024.

Research question #1

● What is the publication landscape of code smell detection tools in JavaScript since the

release year of the language?

o Trending upwards: There has been a recent expansion in the literature regarding the

study of code smell detection tools in JavaScript.

13

RQ1 – Frequency of paper publication by year

14

Figure 1: Frequency of paper publication by year

RQ1 – Trends

● It is noticeable that since 2015, the number of publications has significantly

increased, with the peak occurring in 2017, with 6 papers published.

○ The same trending can be seen in conferences and journals.

15

RQ1 – Frequency in conferences

16

Figure 2: . Frequency of the topic discussion in

conferences

RQ1 – Frequency in journals

17

Figure 3: Frequency of the topic discussion in

journals

RQ1 – Summary

● There is considerable interest in the literature for studying code smell detection tools

in JavaScript systems.

○ From 2015 to 2023 alone, over 25 studies were published proposing and analyzing such

tools.

○ These studies were published in major conferences and journals, reinforcing the relevance

of the topic and the need for a systematic literature review to compile a set of already

studied tools.

18

Research question #2

● What code smell detection tools were published so far and what are their main

features?

o The number of tools capable of detecting code smells in JavaScript code is significant

already.

19

RQ2 – Number of tools per primary study citations

20

Figure 4: List of the tools cited in the PSs with its amount of citations

RQ2 – Summary

● This number is only expected to increase as JavaScript becomes increasingly used in

the Web, being present on more and more devices both desktop and mobile.

○ Another conclusion that can be drawn from the data obtained is that the variety of tools

available shows that it is possible to find the best tool for each type of use.

21

List of code smells detection tools

22

Tool name Plug-in
Detected Bad

Smells

Detection

Technique

Free For

Use

Implementation

Language
Guide Gui

Lizard
Standalone,

API

Cyclomatic

complexity,

Duplicated code

Static Yes Python Yes No

JSNose Standalone

Long method,

Long parameter

list, Refused

bequest and 10

others

AST + metrics
Yes

Java No No

JSLint
Standalone,

API

Cyclomatic

complexity,

Duplicated code

AST + metrics
Yes

JavaScript Yes Hybrid

Google

Closure

Compiler

Standalone,

API

Dead code,

Tempory field
AST + metrics Yes Java Yes No

ESLint
Standalone,

API

Duplicated code,

Long parameter

list, Long

Method/Function

and ?? others

AST + metrics Yes JavaScript Yes No

Coming soon

● Perform a full comprehensive comparison of the tools, evaluating them based on

characteristics such as detected code smells, detection techniques, release year, and

more.

23

Threats to validity

● Construct validity: For the systematic literature review, we used an extensive search

string that included some of the most common terms related to code smells in

JavaScript.

○ One potential issue with this approach is the possibility that the search string might not

cover a sufficient number of primary studies.

○ To mitigate this possible threat, we created the search string iteratively and in pairs and

through multiple tests in real web search engines.

24

Threats to validity

● Internal Validity: A potential threat is related to the incorrect export and tabulation

of data reported by the Scopus web search engine.

○ To mitigate this threat, we performed the data collection and tabulation in pairs.

25

Threats to validity

● External Validity: We decided to focus our work on tools specifically designed for

software built using JavaScript rather than so-called language-agnostic tools.

○ This decision may have significantly limited our results, reducing the number of tools

identified.

○ To mitigate this threat, we used the guidelines of a systematic literature review, which

describe that industrial tools not published in articles may be removed from the list of

study objects

26

Evaluating code smell detection between LLMs

and tools *

* tentative name

Goal

● We know that LLMs are capable of detecting code smells in Java code. But how do

they compare to tools specifically designed for this type of detection?

o To answer this question, I plan to compare the performance of ChatGPT with known tools

in the literature in detecting code smells in Java.

28
[2] Silva, L. L., Silva, J., Montandon, J. E., Andrade, M., & Valente, M. T. Detecting Code Smells using

ChatGPT: Initial Insights. ESEIW/ESEM Emerging Results, Vision and Reflection Papers Tracks, 2024.

[2]

Research questions

● To address the central question of the paper, several research questions (RQs) were

formulated:

o How does the effectiveness of ChatGPT in detecting code smells compare to the state of

art tools?

o Which code smells does ChatGPT find more challenging to detect compared to the state of

art tools?

29

Dataset

● The chosen dataset is:

o Santana, A., Figueiredo, E., Alves Pereira, J. et al. An exploratory evaluation

of code smell agglomerations. Software Qual J (2024).

https://doi.org/10.1007/s11219-024-09680-6

30

Thank you!

Questions?

31

	Slide 1: A systematic literature review of code smell detection tools for JavaScript systems
	Slide 2: Code Smells
	Slide 3: JavaScript
	Slide 4: Automated detection tools
	Slide 5: Goal
	Slide 6: Research questions
	Slide 7: Systematic literature review
	Slide 8: Systematic literature review
	Slide 9: Systematic literature review
	Slide 10: Systematic literature review
	Slide 11: Systematic literature review
	Slide 12: Systematic literature review
	Slide 13: Research question #1
	Slide 14: RQ1 – Frequency of paper publication by year
	Slide 15: RQ1 – Trends
	Slide 16: RQ1 – Frequency in conferences
	Slide 17: RQ1 – Frequency in journals
	Slide 18: RQ1 – Summary
	Slide 19: Research question #2
	Slide 20: RQ2 – Number of tools per primary study citations
	Slide 21: RQ2 – Summary
	Slide 22: List of code smells detection tools
	Slide 23: Coming soon
	Slide 24: Threats to validity
	Slide 25: Threats to validity
	Slide 26: Threats to validity
	Slide 27: Evaluating code smell detection between LLMs and tools *
	Slide 28: Goal
	Slide 29: Research questions
	Slide 30: Dataset
	Slide 31: Thank you! Questions?

