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Context of Our Work
Why LLMs for Code Refactoring?
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Refactoring

• Refactoring reduces code complexity 

and improves maintainability.

• Manual refactoring is costly and slow.

• Refactoring tools are semi-automated, 

inaccurate and require human 

intervention.



4

Large Language Models (LLMs)

• LLMs are models trained on a large amount 

of data and have shown good capability to 

write and understand natural language.

• Studies on LLMs are growing exponentially 

in software engineering, yet their capability 

show limitations and still need to be 

explored.
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Goals

• We aims to explore the extent to 

which variation in prompt 

techniques and their combinations 

affects different refactoring types.

• We intend to provide developers 

and tools with practical insights for 

creating refactoring prompts for 

real-world projects.
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Relevance
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Relevance
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Research Method
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Contribution Progress

• Nunes, H. G., Santana, A., Figueiredo, E., & Costa, H. Tuning code smell prediction 

models: A replication study. In International Conference on Program Comprehension 

(ICPC 2024) - Study 1

• Nunes, H. G., Figueiredo, E., Rocha, L., Nadi S., Ferreira F., & Esteves, G. Evaluating the 

effectiveness of llms in fixing maintainability issues in real-world projects. In International 
Conference on Software Analysis, Evolution and Reengineering (SANER 2025) - Study 2

• Nunes, H. G., Sharma, T., Figueiredo, E. MaRV: A Manually Validated Refactoring 

Dataset. In International Conference on AI Foundation Models and Software Engineering 

(FORGE 2025) - Study 3



Machine Learning to Detect 
Code Smells
Study 1
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Study Context & Goals

• Replicate the study by Cruz et al. (2023), which uses machine 

learning to detect code smells, but with a dataset of modern 

systems.

• We use seven traditional machine learning algorithms to detect 

four code smells.

• We also evaluate how data resampling, feature selection, and 

polynomial feature techniques affect code smell predictions.
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Design of Study 1
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Study Result & Conclusion

• The performance of traditional ML algorithms for code smell 

detection are limited.

• ML techniques, especially resampling, improve prediction 

performance, but not enough.

• This study indicated that we should explore for other solutions. 

LLMs?



Large Language Models for Code 
Refactoring
Study 2
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Study Context & Goals

• We evaluated the effectiveness of 

LLMs for refactoring 10 issue 

categories in real-world projects.

• Furthermore, the study assessed the 

most common LLM failures.

• We also conducted a human 

readability evaluation.
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Design of Study 2
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Effectiveness of the LLM
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Effectiveness of the LLM

Few-shot Llama fixed more 

maintainability issues 

(~45%)
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Effectiveness of the LLM

All LLMs included 

compilation errors and 

caused test failures
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LLM Failures (Hallucination)

Original LLM 

Refactoring
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LLM Failures (Hallucination)

Original LLM 

Refactoring

Original LLM 

Refactoring

?
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Human Evaluation of LLM Readability (RQ3)

Out of 51 method pairs, ~70% considered LLM-refactored code more 

readable.
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Study Conclusion

• Despite limited effectiveness (below 50%), few shot learning

presented the highest effectiveness (~40%), if compared with zero 

shot learning (~30%).

• Overall, participants considered LLM-refactored code more 

readable.

• The results of this study motivated us to evaluate more deeply the 

use of prompt techniques for code refactoring.



Refactoring Dataset
Study 3
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Study Context & Goal

• We used RefactoringMiner to collect 

refactorings and conducted a human 

evaluation to select the most representative 

examples.

• We aim to produce a high-quality manually 

validated dataset of actual refactorings from 

open-source projects, MaRV.
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Design of Study 3
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Manual Evaluation Results



28

Manual Evaluation Results

Both participants agreed in 321 cases (~46%). We 

considered this cases for MaRV
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Study Conclusion

• We aim to use MaRV to 

support several prompting 

techniques (e.g., few-shot 

prompting).



Agenda
Next Steps
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Future Steps

1. Improve MaRV Dataset

2. Select LLMs and Prompting 

Techniques

3. Define the Prompt Design

4. Execute and Validate LLM-

Based Refactorings

5. Evaluate Results and 

Consolidate in a Paper

6. Extend our LLM Study

7. Write and Submit a Journal 

Paper

8. Write and Present Thesis
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Improve MaRV
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Prompt Evaluation

• We aim to evaluate different prompt 

techniques and their variations.

• We will define several prompt 

designs, varying and combining 

techniques.

• We want to identify which prompts 

are most effectiveness for each 

different refactoring type.
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Next Steps Overview
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Agenda



Thank you!
Henrique Nunes | henrique.mg.bh@gmail.com
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