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Context of Our Work
Why LLMs for Code Refactoring?




Refactoring

» Refactoring reduces code complexity

and improves maintainability.

* Manual refactoring is costly and slow.

» Refactoring tools are semi-automated,
inaccurate and require human

intervention.




Large Language Models (LLMs)

* LLMs are models trained on a large amount
of data and have shown good capability to

write and understand natural language.

 Studies on LLMs are growing exponentially
in software engineering, yet their capability
show limitations and still need to be

explored.




Goals

- We aims to explore the extent to
which variation in prompt
techniques and their combinations

affects different refactoring types.

. We intend to provide developers

and tools with practical insights for

creating refactoring prompts for

real-world Er0|ects |a|] SOft =
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Research Method
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Literature Learning
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LLM Refactoring
Effectiveness
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Contribution Progress

* Nunes, H. G., Santana, A., Figueiredo, E., & Costa, H. Tuning code smell prediction
models: A replication study. In International Conference on Program Comprehension
(ICPC 2024) - Study 1

- Nunes, H. G, Figueiredo, E., Rocha, L., Nadi S., Ferreira F., & Esteves, G. Evaluating the
effectiveness of llms in fixing maintainability issues in real-world projects. In International
Conference on Software Analysis, Evolution and Reengineering (SANER 2025) - Study 2

* Nunes, H. G., Sharma, T., Figueiredo, E. MaRV: A Manually Validated Refactoring
Dataset. In International Conference on Al Foundation Models and Software Engineering
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Machine Learning to Detect

Code Smells
Study 1




Study Context & Goals

* Replicate the study by Cruz et al. (2023), which uses machine
learning to detect code smells, but with a dataset of modern

systems.

* We use seven traditional machine learning algorithms to detect

four code smells.

 We also evaluate how data resampling, feature selection, an

d

polynomial feature techniques affect code smell predictions.’ .



Design of Study 1
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Study Result & Conclusion

* The performance of traditional ML algorithms for code smell

detection are limited.

* ML techniques, especially resampling, improve prediction

performance, but not enough.

. This study indicated that we should explore for other solutions.

LLMs?

13



Large Language Models for Code

Refactoring
Study 2




Study Context & Goals

- We evaluated the effectiveness of
LLMs for refactoring 10 issue

categories in real-world projects.

- Furthermore, the study assessed the

most common LLM failures.

« We also conducted a human

readability evaluation.




Design of Study 2
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Effectiveness of the LLM
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Effectiveness of the LLM

S?ﬁ
41

- Few-shot Llama fixed more
maintainability issues
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Effectiveness of the LLM

All LLMs included 42
compilation errors and o2
caused test failures 1918

37
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LLM Failures (Hallucination)

Original LLM

private void put(DirectoryEntry entry,

private void put(DirectoryEntry entry, boolean ) o
boolean ) { [...]

DirectoryEntry prev = null; ?;e*?*;:EEn:*;(ex;;:;ngin:’g, entry);
1f (prev != null) { }
prev.next = entry; . ) , ) o
} private void overwriteEntry(DirectoryEntry existingEntry,
(... ] ?iﬁ&?tﬂﬁyEﬂth newEntry) {
J 1f (existingEntry.prev/= null) {
existingEntry.prev.next = newEntry;
}
[ .. ]
}

lab-Soft —
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LLM Failures (Hallucination)

Original LLM

private void put(DirectoryEntry entry,
boolean overwriteExisting) {

...]
) overwriteEntry(existingEntry, entry);
- [...]

prev.next = entry; . . : . ..
private void overwriteEntry(DirectoryEntry existingEntry,
DirectoryEntry newEntry) {

1if (existingEntry.prev/= null) {
existingEntry.prev.next = newEntry;



Human Evaluation of LLM Readability (RQ3)

Out of 51 method pairs, “70% considered LLM-refactored code more

readable.

i
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1
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[ ] Original code [ ] LLM-refactored code [} Equivalent
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Study Conclusion

. Despite limited effectiveness (below 50%), few shot learning
presented the highest effectiveness (~Y40%), if compared with zero
shot learning (~30%).

. Overall, participants considered LLM-refactored code more
readable.

. The results of this study motivated us to evaluate more deeply the

use of prompt techniques for code refactoring.
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Refactoring Dataset
Study 3




Study Context & Goal

- We used RefactoringMiner to collect
refactorings and conducted a human
evaluation to select the most representative

examples.

- We aim to produce a high-quality manually

validated dataset of actual refactorings from




Design of Study 3
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Manual Evaluation Results

Votes Count Total

CONSEnsUS [disagree, disagree] 84 405
[agree, agree] 321
[disagree, agree] 217

Conflict [l don't know, disagree] 27 285

[l don’t know, agree] 41
Other [l don’t know, | don’t know] 3 3
693
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Manual Evaluation Results

Votes Count Total
[disagree, disagree] 84

Consensus lagree, agree] > 321 405
[disagree, agree] 217

Conflict [l don’t know, disagree] 27 285
[l don’t know, agree] 41

Other [l don’'t know, | don’t know] 3 3
Both participants agreed in 321 cases (~46%). We 693

considered this cases for MaRV

lab-Soft —
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Study Conclusion

- We aim to use MaRV to
support several prompting
techniques (e.g., few-shot

prompting).




Agenda
Next Steps




Future Steps

1. Improve MaRV Dataset

2. Select LLMs and Prompting

Techniques
3. Define the Prompt Design

4. Execute and Validate LLM-

Based Refactorings

. Evaluate Results and

Consolidate in a Paper

. Extend our LLM Study

. Write and Submit a Journal

Paper

. Write and Present Thesis

|ah-Soft —
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Improve MaRV

K() throws IO
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void testOnCollisionsSSK() throws IOExcepti
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checkOnCollisionsSSK(false

, SSKEncodeExcepta

J

checkOnCollisionsSSK(true);

1 useSlotFilter
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(
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File f File(tempDir, "saltstore");
FileUtil .removeAll(f);

void
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Prompt Evaluation

..........................................
Prompt Template

- Natural Language Instruction

- We aim to evaluate different prompt e

You arc an expert in refactoring Java mcethods. Apply
[refactoring] to improve readability.

techniques and their variations.

[constraints list]
[procedure steps]

. We Wi I I d efi n e Seve ra I p rO m pt E Below arce 3 examples (input to output). Complete the 4th.
Refactoring Demonstrations

designs, varying and combining 1% tapt

[ *'‘example before commit *‘‘]
# Output:
[ **‘example aftcr commit **‘)

techniques.

[two more demonstrations...]

Mecthod to be Refactored

# Input:
2| /' ‘input method*'‘]
| # Output:

are most effectiveness for each

33
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. We want to identify which prompts




Next Steps Overview
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Agenda

Improve the MaRV Dataset |

Select LLMs and Prompting Techniques f

Define the Prompt Design

Execute and Validate LLM-Based Refactorings |
Evaluate Results and Consolidate in a Paper|
Extend our LLM Study |

Write and Submit a Journal Paperf

Write Thesis |

Present Thesis |




Thank you!

Henrique Nunes [ henrigue.mg.bh@gmail.com

software engineearing labor:
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