
Large Language Models for 
Code Refactoring
PhD Thesis Project

Researcher: Henrique Nunes

Advisor & Coadvisor: Eduardo Figueiredo & Tushar Sharma



Context of Our Work
Why LLMs for Code Refactoring?



3

Refactoring

• Refactoring reduces code complexity 

and improves maintainability.

• Manual refactoring is costly and slow.

• Refactoring tools are semi-automated, 

inaccurate and require human 

intervention.



4

Large Language Models (LLMs)

• LLMs are models trained on a large amount 

of data and have shown good capability to 

write and understand natural language.

• Studies on LLMs are growing exponentially 

in software engineering, yet their capability 

show limitations and still need to be 

explored.



5

Goals

• We aims to explore the extent to 

which variation in prompt 

techniques and their combinations 

affects different refactoring types.

• We intend to provide developers 

and tools with practical insights for 

creating refactoring prompts for 

real-world projects.



6

Relevance



7

Relevance



8

Research Method



9

Contribution Progress

• Nunes, H. G., Santana, A., Figueiredo, E., & Costa, H. Tuning code smell prediction 

models: A replication study. In International Conference on Program Comprehension 

(ICPC 2024) - Study 1

• Nunes, H. G., Figueiredo, E., Rocha, L., Nadi S., Ferreira F., & Esteves, G. Evaluating the 

effectiveness of llms in fixing maintainability issues in real-world projects. In International 
Conference on Software Analysis, Evolution and Reengineering (SANER 2025) - Study 2

• Nunes, H. G., Sharma, T., Figueiredo, E. MaRV: A Manually Validated Refactoring 

Dataset. In International Conference on AI Foundation Models and Software Engineering 

(FORGE 2025) - Study 3



Machine Learning to Detect 
Code Smells
Study 1



11

Study Context & Goals

• Replicate the study by Cruz et al. (2023), which uses machine 

learning to detect code smells, but with a dataset of modern 

systems.

• We use seven traditional machine learning algorithms to detect 

four code smells.

• We also evaluate how data resampling, feature selection, and 

polynomial feature techniques affect code smell predictions.



12

Design of Study 1



13

Study Result & Conclusion

• The performance of traditional ML algorithms for code smell 

detection are limited.

• ML techniques, especially resampling, improve prediction 

performance, but not enough.

• This study indicated that we should explore for other solutions. 

LLMs?



Large Language Models for Code 
Refactoring
Study 2



15

Study Context & Goals

• We evaluated the effectiveness of 

LLMs for refactoring 10 issue 

categories in real-world projects.

• Furthermore, the study assessed the 

most common LLM failures.

• We also conducted a human 

readability evaluation.



16

Design of Study 2



17

Effectiveness of the LLM



18

Effectiveness of the LLM

Few-shot Llama fixed more 

maintainability issues 

(~45%)



19

Effectiveness of the LLM

All LLMs included 

compilation errors and 

caused test failures



20

LLM Failures (Hallucination)

Original LLM 

Refactoring



21

LLM Failures (Hallucination)

Original LLM 

Refactoring

Original LLM 

Refactoring

?



22

Human Evaluation of LLM Readability (RQ3)

Out of 51 method pairs, ~70% considered LLM-refactored code more 

readable.



23

Study Conclusion

• Despite limited effectiveness (below 50%), few shot learning

presented the highest effectiveness (~40%), if compared with zero 

shot learning (~30%).

• Overall, participants considered LLM-refactored code more 

readable.

• The results of this study motivated us to evaluate more deeply the 

use of prompt techniques for code refactoring.



Refactoring Dataset
Study 3



25

Study Context & Goal

• We used RefactoringMiner to collect 

refactorings and conducted a human 

evaluation to select the most representative 

examples.

• We aim to produce a high-quality manually 

validated dataset of actual refactorings from 

open-source projects, MaRV.



26

Design of Study 3



27

Manual Evaluation Results



28

Manual Evaluation Results

Both participants agreed in 321 cases (~46%). We 

considered this cases for MaRV



29

Study Conclusion

• We aim to use MaRV to 

support several prompting 

techniques (e.g., few-shot 

prompting).



Agenda
Next Steps



31

Future Steps

1. Improve MaRV Dataset

2. Select LLMs and Prompting 

Techniques

3. Define the Prompt Design

4. Execute and Validate LLM-

Based Refactorings

5. Evaluate Results and 

Consolidate in a Paper

6. Extend our LLM Study

7. Write and Submit a Journal 

Paper

8. Write and Present Thesis



32

Improve MaRV



33

Prompt Evaluation

• We aim to evaluate different prompt 

techniques and their variations.

• We will define several prompt 

designs, varying and combining 

techniques.

• We want to identify which prompts 

are most effectiveness for each 

different refactoring type.



34

Next Steps Overview



35

Agenda



Thank you!
Henrique Nunes | henrique.mg.bh@gmail.com

36


	Slide 1: Large Language Models for Code Refactoring PhD Thesis Project
	Slide 2: Context of Our Work Why LLMs for Code Refactoring?
	Slide 3: Refactoring
	Slide 4: Large Language Models (LLMs)
	Slide 5: Goals
	Slide 6: Relevance
	Slide 7: Relevance
	Slide 8: Research Method
	Slide 9: Contribution Progress
	Slide 10: Machine Learning to Detect Code Smells Study 1
	Slide 11: Study Context & Goals
	Slide 12: Design of Study 1
	Slide 13: Study Result & Conclusion
	Slide 14: Large Language Models for Code Refactoring Study 2
	Slide 15: Study Context & Goals
	Slide 16: Design of Study 2
	Slide 17: Effectiveness of the LLM
	Slide 18: Effectiveness of the LLM
	Slide 19: Effectiveness of the LLM
	Slide 20: LLM Failures (Hallucination)
	Slide 21: LLM Failures (Hallucination)
	Slide 22: Human Evaluation of LLM Readability (RQ3)
	Slide 23: Study Conclusion
	Slide 24: Refactoring Dataset Study 3
	Slide 25: Study Context & Goal
	Slide 26: Design of Study 3
	Slide 27: Manual Evaluation Results
	Slide 28: Manual Evaluation Results
	Slide 29: Study Conclusion
	Slide 30: Agenda Next Steps
	Slide 31: Future Steps
	Slide 32: Improve MaRV
	Slide 33: Prompt Evaluation
	Slide 34: Next Steps Overview
	Slide 35: Agenda
	Slide 36: Thank you! Henrique Nunes | henrique.mg.bh@gmail.com

