Large Language Models for

Code Refactoring
PhD Thesis Project

Researcher: Henrique Nunes
Advisor & Coadvisor: Eduardo Figueiredo & Tushar Sharma

EEEEEEEEEEEEE

Context of Our Work
Why LLMs for Code Refactoring?

Refactoring

» Refactoring reduces code complexity

and improves maintainability.

* Manual refactoring is costly and slow.

» Refactoring tools are semi-automated,
inaccurate and require human

intervention.

Large Language Models (LLMs)

* LLMs are models trained on a large amount
of data and have shown good capability to

write and understand natural language.

 Studies on LLMs are growing exponentially
in software engineering, yet their capability
show limitations and still need to be

explored.

Goals

- We aims to explore the extent to
which variation in prompt
techniques and their combinations

affects different refactoring types.

. We intend to provide developers

and tools with practical insights for

creating refactoring prompts for

real-world Er0|ects |a|] SOft =

5

Relevance

awesome_copilot Public 57 Edit Pies ~ O Unwatch 172 ~ Y Fork 13k - Starred 10.8% -

F main ~ F 6Branches © 0Tags Q Ge t Add file ~ <> Code ~ About

Community-contributed instructions,
versions (#365) @@ 2b45¢a4 - 15 howrs ago (\) 314 Commits

‘1" CypherHK feat: updat prompts, and configurations to help you

make the most of GitHub Copilot.

B github Partners (#354) 2 days ago
9 3
Kl hacktoberfest Github-copdot
B schemas Partners) days 3
o
prompt-engineering
B .vscode Awesome Cop collect (» da
v . f 3ys a9 0 Readm
B agents Partners (#354) 2 days ago § MIT hicense
® Code of conduct
B chatmodes feat: updat 1o na) ! ago
Ay Contributing
B8 collections Awesome Copilot collection (> days ag M Security policy
A AL A Activity
B docs 4 speciakist 3 S hours ag
E Cust e
Foang install links
.t_‘ﬂg >ing ir) nk Qloek :
B instructions Partners (#354) 2 days age © 172 watching
Y 13k fork
B prompts feat ted tool names 10 namespaced version 15 hours ag
Report repository
B scripts er 5 (#32) 4 months ago
Contributors 130
[j All-contnbutorsee add spectatora as a contnibutor for code (#3562 15 hours ago
Q::000@
D £ditorconfig enforcing (*32) 4 months ago -
P~ ™ AN A s ”~

Relevance

@ evals Public O Watch 272 ~ Y Fork 28k - Starred 17.2k -

F main ~ P 86 Branches © 10 Tags Q Gotofile t Add file ~ About

Evals is a framework for evaluating LLMs

A, dmitry-openai Updating readme to link to OpenAl hosted evals experience (¢, @8 X ¢db8ced - 10 months ago o) 688 Commits and LLM systems, and an open-source

registry of benchmarks.
Bi) github Make the torch dep optional (#1524) last year

[0 Readme
B docs Add info about legging and link to logviz (#1480) last year ,

A : &3 View ficense

| evals 20240930 steven exception handling usage tokens (#1560) last year 8B Security policy

A~ Activity
B examples Upgrade openai to >=1.0.0 (#1420) 2 years ago

[E] Custom properties
BB scripts Fix formatting/typing so pre-commit hooks pass (#1451) last year W 17.2k stars

272 watching

B tests/unit/evals [unit test] Adding unit test for metrics.get_accuracy (#224) 2 years ago ®)

Y 2.8k forks
D gitattnbutes Initial Commint 2 years ago Report repository
D gitignore Self-Prompting eval (#1401) 2 years ago

Contributors 459
D pre-commit-config.yaml Adding ruff. running pre-commit hooks, small fixes and doc... 2 years ago 9
M LCENSEmd Already Said That Eval (#1490) last vear ; I . iE <

Research Method

=-B-B-B-B

Informal Machine
Literature Learning
Review Study

LLM Refactoring
Effectiveness
Study

Refactoring
Dataset
Study

Refactoring
Study

8

Contribution Progress

* Nunes, H. G., Santana, A., Figueiredo, E., & Costa, H. Tuning code smell prediction
models: A replication study. In International Conference on Program Comprehension
(ICPC 2024) - Study 1

- Nunes, H. G, Figueiredo, E., Rocha, L., Nadi S., Ferreira F., & Esteves, G. Evaluating the
effectiveness of llms in fixing maintainability issues in real-world projects. In International
Conference on Software Analysis, Evolution and Reengineering (SANER 2025) - Study 2

* Nunes, H. G., Sharma, T., Figueiredo, E. MaRV: A Manually Validated Refactoring
Dataset. In International Conference on Al Foundation Models and Software Engineering

9

Machine Learning to Detect

Code Smells
Study 1

Study Context & Goals

* Replicate the study by Cruz et al. (2023), which uses machine
learning to detect code smells, but with a dataset of modern

systems.

* We use seven traditional machine learning algorithms to detect

four code smells.

 We also evaluate how data resampling, feature selection, an

d

polynomial feature techniques affect code smell predictions.’ .

Design of Study 1

© © © 0 6 O
(1 - —% - —EF—=5

Test on Unseen Feature Engineering
Data and Resample Study

Models Models

Data Data
Comparision

Separation Analysis Parametrization

Study Result & Conclusion

* The performance of traditional ML algorithms for code smell

detection are limited.

* ML techniques, especially resampling, improve prediction

performance, but not enough.

. This study indicated that we should explore for other solutions.

LLMs?

13

Large Language Models for Code

Refactoring
Study 2

Study Context & Goals

- We evaluated the effectiveness of
LLMs for refactoring 10 issue

categories in real-world projects.

- Furthermore, the study assessed the

most common LLM failures.

« We also conducted a human

readability evaluation.

Design of Study 2
® ® ® ®

® ©
\ Beb S T | G= —l-'®
— sQ\ T a\ag | T %

o-°’|i|

—
| | ﬂﬂ@
1 | X [I
I B8 ! | |
I I I I |
Collectand | Identify | Select | UselLMsto 1| Human | Evaluate
Build Projects | Maintainability | Issues I Fix Issues I Evaluation I Results
[Issues I I I |
I | | | I
binaries 2,446 127 51 LLM-based readability results
issues samples solutions & LLM solutions

lab-Soft —

16

Effectiveness of the LLM

Methods

60
50

40
30
20
10

0

57

41 39

Fixed

2322

12

Not fixed

0O Copilot Chat

42

37
32

Compilation
error

OlLlama 3.1 70B

1918

|_||_|I R e

Test error Degraded

@Llama 3.1 70B (few-shot)

16

1 3
—

No
suggestion

[ah-Soft —

17

Effectiveness of the LLM

S?ﬁ
41

- Few-shot Llama fixed more
maintainability issues

(~45%)
1 i B B ' 3
Fixed
OCopilot Chat 0OLlama 3.1 70B @Llama 3.1 70B (few-shot)
lab-Soft —

18

Effectiveness of the LLM

All LLMs included 42
compilation errors and o2
caused test failures 1918

37

L35 Al T

Compilation Test error
error

OCopilot Chat OlLlama 3.1 70B ®@Llama 3.1 70B (few-shot)

lab-Soft —

19

LLM Failures (Hallucination)

Original LLM

private void put(DirectoryEntry entry,

private void put(DirectoryEntry entry, boolean) o
boolean) { [...]

DirectoryEntry prev = null; ?;e*?*;:EEn:*;(ex;;:;ngin:’g, entry);
1f (prev != null) { }
prev.next = entry; .) ,) o
} private void overwriteEntry(DirectoryEntry existingEntry,
(...] ?iﬁ&?tﬂﬁyEﬂth newEntry) {
J 1f (existingEntry.prev/= null) {
existingEntry.prev.next = newEntry;
}
[..]
}

lab-Soft —

20

LLM Failures (Hallucination)

Original LLM

private void put(DirectoryEntry entry,
boolean overwriteExisting) {

...]
) overwriteEntry(existingEntry, entry);
- [...]

prev.next = entry; . . : . ..
private void overwriteEntry(DirectoryEntry existingEntry,
DirectoryEntry newEntry) {

1if (existingEntry.prev/= null) {
existingEntry.prev.next = newEntry;

Human Evaluation of LLM Readability (RQ3)

Out of 51 method pairs, “70% considered LLM-refactored code more

readable.

i

8 9 1 11 12 13 14 15 16 17 18 19

1

ali |

20 21 22 23 24 25 % 27 28 29 3

LT of o

6 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

[] Original code [] LLM-refactored code [} Equivalent

lab-Soft —

22

Study Conclusion

. Despite limited effectiveness (below 50%), few shot learning
presented the highest effectiveness (~Y40%), if compared with zero
shot learning (~30%).

. Overall, participants considered LLM-refactored code more
readable.

. The results of this study motivated us to evaluate more deeply the

use of prompt techniques for code refactoring.

23

Refactoring Dataset
Study 3

Study Context & Goal

- We used RefactoringMiner to collect
refactorings and conducted a human
evaluation to select the most representative

examples.

- We aim to produce a high-quality manually

validated dataset of actual refactorings from

Design of Study 3

® ® O, ® ®
©0O0 : -

| | I
! | ! N
) | _ | I I
Repository 1 Refactoring | Data | Refactoring | Data MaRV
Selection I Technique 1 Collection ! Validation | Storage
I Selection | I I
| | I I
126 commits with code pairs evaluated
repositories refactorings & metadata pairs

Manual Evaluation Results

Votes Count Total

CONSEnsUS [disagree, disagree] 84 405
[agree, agree] 321
[disagree, agree] 217

Conflict [l don't know, disagree] 27 285

[l don’t know, agree] 41
Other [l don’t know, | don’t know] 3 3
693

27

Manual Evaluation Results

Votes Count Total
[disagree, disagree] 84

Consensus lagree, agree] > 321 405
[disagree, agree] 217

Conflict [l don’t know, disagree] 27 285
[l don’t know, agree] 41

Other [l don’'t know, | don’t know] 3 3
Both participants agreed in 321 cases (~46%). We 693

considered this cases for MaRV

lab-Soft —

28

Study Conclusion

- We aim to use MaRV to
support several prompting
techniques (e.g., few-shot

prompting).

Agenda
Next Steps

Future Steps

1. Improve MaRV Dataset

2. Select LLMs and Prompting

Techniques
3. Define the Prompt Design

4. Execute and Validate LLM-

Based Refactorings

. Evaluate Results and

Consolidate in a Paper

. Extend our LLM Study

. Write and Submit a Journal

Paper

. Write and Present Thesis

|ah-Soft —

31

Improve MaRV

K() throws IO

) -‘-f»+l()

excepiion

throws I(

void testOnCollisionsSSK() throws IOExcepti
SSKVerifyException, KeyDecodeException, KeyCollisionException {
checkOnCollisionsSSK(false

, SSKEncodeExcepta

J

checkOnCollisionsSSK(true);

1 useSlotFilter

~§

void checkOnCollisionsSSK(boolean useSlotFilter) throws IOEx

(

InvalidCompressionCodecException, SSKVerifyException, KeyDecodekE:
File f File(tempDir, "saltstore");
FileUtil .removeAll(f);

void
RAMFreenetStore<DSAPub
key pubkeyCache pleGetl
store SSKkStore(pubkeyCach

ishFreenetStore<SSKBLock> saltStore
PRNG, Sem

Cac FreenetStor

cachingFreenetStore
cachingStore.
RandomSource random

Prompt Evaluation

..
Prompt Template

- Natural Language Instruction

- We aim to evaluate different prompt e

You arc an expert in refactoring Java mcethods. Apply
[refactoring] to improve readability.

techniques and their variations.

[constraints list]
[procedure steps]

. We Wi I I d efi n e Seve ra I p rO m pt E Below arce 3 examples (input to output). Complete the 4th.
Refactoring Demonstrations

designs, varying and combining 1% tapt

[*'‘example before commit *‘‘]
Output:
[**‘example aftcr commit **‘)

techniques.

[two more demonstrations...]

Mecthod to be Refactored

Input:
2| /' ‘input method*'‘]
| # Output:

are most effectiveness for each

33

e EEEEE-E------
|
-

. We want to identify which prompts

Next Steps Overview

© ® ® ® O,

— X — &Y — i,

Improve Define Prompts Create Generate Replace Methods

_ : Evaluate
Dataset Tech., LLMs, and Prompts LLMs & Build Projects Results
Pipeline Evaluation Refactoring
1ah-SOft —

34

Agenda

Improve the MaRV Dataset |

Select LLMs and Prompting Techniques f

Define the Prompt Design

Execute and Validate LLM-Based Refactorings |
Evaluate Results and Consolidate in a Paper|
Extend our LLM Study |

Write and Submit a Journal Paperf

Write Thesis |

Present Thesis |

Thank you!

Henrique Nunes [henrigue.mg.bh@gmail.com

software engineearing labor:

36

	Slide 1: Large Language Models for Code Refactoring PhD Thesis Project
	Slide 2: Context of Our Work Why LLMs for Code Refactoring?
	Slide 3: Refactoring
	Slide 4: Large Language Models (LLMs)
	Slide 5: Goals
	Slide 6: Relevance
	Slide 7: Relevance
	Slide 8: Research Method
	Slide 9: Contribution Progress
	Slide 10: Machine Learning to Detect Code Smells Study 1
	Slide 11: Study Context & Goals
	Slide 12: Design of Study 1
	Slide 13: Study Result & Conclusion
	Slide 14: Large Language Models for Code Refactoring Study 2
	Slide 15: Study Context & Goals
	Slide 16: Design of Study 2
	Slide 17: Effectiveness of the LLM
	Slide 18: Effectiveness of the LLM
	Slide 19: Effectiveness of the LLM
	Slide 20: LLM Failures (Hallucination)
	Slide 21: LLM Failures (Hallucination)
	Slide 22: Human Evaluation of LLM Readability (RQ3)
	Slide 23: Study Conclusion
	Slide 24: Refactoring Dataset Study 3
	Slide 25: Study Context & Goal
	Slide 26: Design of Study 3
	Slide 27: Manual Evaluation Results
	Slide 28: Manual Evaluation Results
	Slide 29: Study Conclusion
	Slide 30: Agenda Next Steps
	Slide 31: Future Steps
	Slide 32: Improve MaRV
	Slide 33: Prompt Evaluation
	Slide 34: Next Steps Overview
	Slide 35: Agenda
	Slide 36: Thank you! Henrique Nunes | henrique.mg.bh@gmail.com

