.% PGCC - P6s-Graduacdo em Ciéncia da Computacédo (UEFS)

PGCC
UEFS

Improving JavaScript Test Quality with Large
Language Models:

Lessons from Test Smell Refactoring

Master's student
Gabriel Amaral

PGCC - UEFS
Advisor Co-Advisor
Larissa Rocha Eduardo Figueiredo
UNEB/PGCC-UEFS UFMG

Lab-Soft 2025

Tests Smells

0 What are they? x: Impact

Inadequate design patterns that arise in Efficacy and maintainability of tests
automated test suites.

A Indicators

Slow Testing
- Excessive Configurability
- Interdependent Tests
- Redundant Tests

Lab-Soft 2025

Example - Lazy Test

test("User operations”, ()=> {
createUser("Ana");
updateUser("Ana", { age: 30 });
deleteUser("Ana");
expect(getUser("Ana")).toBeNull();

k)3

Lab-Soft 2025

Motivation

Several studies analyze the impact of test smells on the development process.
(Van Deursen, 2001; Bavota, 2016)

Most studies focus on statically typed lanquages (Java, Scala, C++), leaving agap in

dynamic languages like Javascript, which has few recent studies on the subject.
(Jorge, 2021; Oliveira, 2024)

LLMs have demonstrated great potential in code generation/refactoring.
(Yu, 2023; Hou, 2024)

Lab-Soft 2025

Research Objectives and Questions

Objective: To evaluate the effectiveness of LLMs in refactoring test smells in JavaScript.

e RO1: Do LLMs remove test smells without affecting test behavior or coverage?
e R0Q2: Does refactoring using LLMs introduce new test smells or degrade test quality?
e ROQ3: How do LLMs differ in removing specific types of test smells (strengths and limitations)?

e RO4: What is the impact of refactoring using LLMs on structural quality (complexity, size, maintainability)?

Lab-Soft 2025 5

Research Design

Q &
Detection Testsmells

smell under

Repositories i
tools investigation

L

I

LLM

]

®00

Selection

Pre-refactoring activities

Detecting tests

Run tests

and Smell
coverage 8 classification
g@) SNUTSJS

Test method
+*

Steel
Selected
respositories [i
Prompt : Refactored
LLM 5 code
Code refactoring
Refactoring process

Figure 1: Research design flow

Detecting test

% smells with
tools
Refactored
code

Result
Analysis

Post-refactoring analysis

Lab-Soft 2025

Pre-Refactoring @

Detection Tools

&

Steel

(Jorge et al., 2021)

16 types of test smells

&

SNUTS.JS

(Oliveira et al., 2024)

16 types of test smells

Lab-Soft 2025

Pre-Refactoring (&
Selection of Smell Tests

= Steel

(Jorge et al., 2021)

Smell

Description

Assertion Roulette

Multiple assertions without clear explanation, making it difficult to identify the fault.

Duplicate Assert

Repeated verification of the same condition within the same method,
impairing readability.

Magic Number

Use of literal numbers without explanation, reducing readability.

Lazy Test

Superficial testing that checks multiple functionalities without verifying each
functionality separately and specifically.

Redundant Print

Unnecessary debug printouts, such as console.log() etc...

Table 1. Selected smells from the Steel tool.

Lab-Soft 2025

Pre-Refactoring (&
Selection of Smell Tests

Y= SNUTS.JS

(Oliveira et al., 2024)

Smell

Description

Conditional Test Logic

The presence of conditional statements (if-else, loops) within the test method
compromises its effectiveness.

Overcommented Test

The test method is overly detailed, making it difficult to read.

Suboptimal Assert

Using inappropriate assertions to verify conditions reduces clarity.

Test Without Description

The test case lacks a name or descriptive message, making it unclear.

Sensitive Equality

Using comparisons based on toString() or textual representation makes the tests
fragile.

Table 2. Selected smells from the SNUTS.JS tool.

Lab-Soft 2025

Pre-Refactoring (&
Selection of Smell Tests

Human Evaluation

To ensure the reliability of detected test smells, a Human Evaluation step is
required. This validation confirms whether each automatically identified smell is
indeed a true smell, enabling the construction of a robust and trustworthy
dataset.

Lab-Soft 2025

Pre-Refactoring Q}

Selection of Repositories

Javascript as the main
language 0

HaART 774 repositories

Activity of recent

GitHub
Search (GHS) S JavaScrip; is present in 75% of the
source code.
PerLaor;t%;gg @3 repositories e Open-source \
* ']
/ e Test suite) -
Script python
10 e Jest Framework
Selected P rep.
Repositories

Repositories used in this study

Lab-Soft 2025 11

Pre-Refactoring o
Selection of LLMS

Business Models using Zero-Shot Prompting

6 @ K

Copilot Amazon Code Claude Code
(GPT-40) Whisperer (Haiku 4.5)

Modelos Open-Weight para Auto-CoT Prompting

I

Lhama-70B DECREEELS StarCoder2-15B

Lab-Soft 2025

12

Refactoring

Run tests
and
coverage

Detecting tests

smells with tools Test method
+

O

Selected
respositories

—| Prompt and Execution

Smell
classification
D
<> >_

@J » Prompt

Code refactoring

e Zero-Shot - direct instructions without examples. Via VSCode extensions.

e Auto-CoT: The model generates a structured chain of reasoning before refactoring. Via Hugging Face API

Refactored

e

<>

code

Lab-Soft 2025

13

Post-Refactoring Analysis

'_h, »

</> -
% suurs.ss .!.)“

Refactored Run tests o= -

code and Result
coverage § sgee| Analysis
Detecting test
smells with
tools

Functional Validation: Execution of tests to preserve behavior and code coverage analysis.

Smell Removal: Reapplication of detection tools (SNUTS.JS/Steel).
Structural Quality: Analysis of ASTs for metric extraction:

o Lines of Source Code (SLOC)

o Cyclomatic Complexity and Cyclomatic Density

o Halstead Effort and Bugs

o Maintainability Index

Lab-Soft 2025

14

Preliminary Results

Business Models using Zero-Shot Prompting Test Smells Distribution
50
® & -
Copilot Amazon Code 40 |- 38
(GPT-40) Whisperer
g 30
148 occurrences identified in 10 distinct g
categories. g 23 2
8 20|
E
=
. e - . s 12
Key challenges identified in JavaScript
testing: 0T 7
e Bad practices in assertions 0
X
& N K¢ S X &
. . ¥ & oo $ ¥ s K 2
e Lack of documentation and clarity g & F F ¢ &F F F & &
Q\‘o é@"o OQN\ & o&@ & O\N‘Q “{04 &
o o & & &£ F & & <
e Inadequate structural organization & o v &eﬁ

Test Smell Type

Lab-Soft 2025 15

RQ1: Do LLMs remove test smells without affecting test behavior or coverage?

Changes observed: Distribution of Failed Smells by Tool

I I cCopilot
I I ‘Whisperer

e Copilot and Whisperer:
17 of 148 (11,48%)

Smells with few or no flaws:

e Test Without Description
e (Overcommented Test

Number of Occurrences

more cosmetic nature

Structural refactoring carries a higher &
risk/impact, while cosmetic 3 &
adjustments are safer. o

Smell Type

Lab-Soft 2025 16

RQ1: Do LLMs remove test smells without affecting test behavior or coverage?

Copilot with 5 cases, altered test coverage; Whisperer with 6 cases:
o Duplicate Assert
o Lazy Test
o Conditional Test Logic

Modest variations (almost always <1%)

Refactoring prioritizes preserving behavior.

Lab-Soft 2025

17

RQ2: Does refactoring using LLMs introduce new test smells or degrade test quality?

Refactoring the Lazy Test is the biggest catalyst
for problems.

Implications:

Number of Occurrences

e Refactoring Lazy Tests requires extra
validation.
e Both LLMs face similar limitations.

Distribution of Added New Smells by Tool

20

I l Copilot
I I ‘Whisperer

il 1
0 .
N W
& N
o e
3 &%
N >
Q.Q (N
9 &
>
ol
Smell Type

Lab-Soft 2025

30

Number of Occurrences

RQ@3: How do LLMs differ in removing specific types of test smells

(strengths and limitations)?

Distribution of Removed Smells on Copilot

27 27 I Jl Successful

I I Failure

18

Smell Type

Distribution of Removed Smells on Whisperer

30 -

27

Number of Occurrences

Smell Type

I l Successful
I l Failure

Lab-Soft 2025

19

RQ4: What is the impact of refactoring using LLMs on structural quality
(complexity, size, maintainability)?

e Code volume (Logical SLOC): e Halstead Effort:
o Consistent increase in both tools (+13.2%).
o Whisperer — higher average growth (14,338 vs. 12,662).

o Copilot: -19,3% (simplification and removal of
redundancies).
o Whisperer: practically stable.

e Cyclomatic complexity:

o Stable averages(~1.62) e Halstead Bugs:
o Stable (Copilot 0,017; Whisperer 0,018).

e Cyclomatic density: e Manutenibilidade:
o Reduction 14,8% (Copilot) o Both above 95 (high).
o Reduction 21,4% (Whisperer) o Whisperer: slight drop and greater variability (IOR 1).

— Indicates a better balance between code complexity and size.

Refactoring tends to increase code size but reduce complexity (cyclomatic density and
cognitive effort) - especially in Copilot, while maintaining good maintainability.

Lab-Soft 2025 20

Conclusion

e Copilot (GPT-40): 58.78% success rate in removing smells without altering behavior
e Code Whisperer: 47.30% success rate

e 15% of refactorings alter test behavior

e Stable test coverage in 96% of cases (preservation > expansion)

e New smellsintroduced in 13-16% of cases (especially in Lazy Test)
Next steps

e Increase the number of smells analyzed.
e Use of more prompt models and strategies (Few-Shot, Auto-CoT)

e Expertanalysis of refactored code.

Lab-Soft 2025

21

References

Aljedaani, W., Peruma, A., Aljohani, A., Alotaibi, M., Mkaouer, M. W., Ouni, A., Newman, C. D., Ghallab, A., e Ludi, S. (2021). Test smell detection tools: A systematic mapping
study. In Proceedings of the 25th International Conference on Evaluation and Assessment in Software Engineering, paginas 170-180

Cass, S. (2024). The top programming languages 2024. IEEE Spectrum. Accessed: 2025-04-28.

Greif, S. e Burel, E. (2024). The state of javascript 2024: Testing - jest. https://2024.stateofjs.com/en-US/libraries/testing/
. Online; accessed 25 April 2025. Survey run by Devographics from Nov 13 to Dec 10, 2024 with 14,015 responses. Results published on Dec 16, 2024.

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo,David Lo, John Grundy, and Haoyu Wang. 2024. Large language models for software engineering: A
systematic literature review. ACM Transactions on Software Engineering and Methodology (2024).
Jorge, D., Machado, P., e Andrade, W. (2021). Investigating test smells in javascript test code. In Proceedings of the 6th Brazilian Symposium on Systematic and Automated

Software Testing, SAST '21, pagina 36-45, New York, NY, USA. Association for Computing Machinery.

Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Andrea De Lucia, and Denys Poshyvanyk. 2016. An empirical investigation into the
nature of test smells. In Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering. Association for Computing Machinery, 4-15.

Oliveira, J., Mateus, L., Virg'inio, T., e Rocha, L. (2024). Snuts.js: Sniffing nasty unit test smells in javascript. In Anais do XXXVIII Simpésio Brasileiro de Engenharia de Software,
paginas 720-726, Porto Alegre, RS, Brasil. SBC.

Silva, A. C. (2022). Identificacdo e caracterizagdo de test smells em javascript. Instituto de Ciéncias Exatas e Informatica - Pontificia Universidade, 138:52-81.
Sommerville, I. (2011). Software Engineering, 9/E. Pearson Education India.

Van Deursen, A., Moonen, L., Van Den Bergh, A., e Kok, G. (2001). Refactoring test code. In Proceedings of the 2nd international conference on extreme programming and
flexible processes in software engineering (XP2001), paginas 92-95. Citeseer.

Yu, S., Fang, C., Ling, Y., Wu, C., e Chen, Z. (2023). LIm for test script generation and migration: Challenges, capabilities, and opportunities. In 2023 IEEE 23rd International
Conference on Software Quality, Reliability, and Security (QRS), paginas 206-217.

Lab-Soft 2025 22

https://thenounproject.com/browse/icons/term/agile-project/
https://thenounproject.com/browse/icons/term/gears/

Thanks!

Do you have any questions?
gabrielamaralsousa@gmail.com

Artifacts available at Zenodo
https://doi.org/10.5281/zenodo.17058737

CREDITS: This presentation template was created by Slidesgo, and includes icons,
infographics & images by Freepik, Noun Project e Flaticon

Lab-Soft 2025 23

https://bit.ly/3A1uf1Q
http://bit.ly/2TtBDfr
https://thenounproject.com/
https://www.flaticon.com/

