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Tests Smells

0 What are they? x: Impact

Inadequate design patterns that arise in Efficacy and maintainability of tests
automated test suites.

A Indicators

Slow Testing
- Excessive Configurability
- Interdependent Tests
- Redundant Tests
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Example - Lazy Test

test("User operations”, ()=> {
createUser("Ana");
updateUser("Ana", { age: 30 });
deleteUser("Ana");
expect(getUser("Ana")).toBeNull();

k)3
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Motivation

Several studies analyze the impact of test smells on the development process.
(Van Deursen, 2001; Bavota, 2016)

Most studies focus on statically typed lanquages (Java, Scala, C++), leaving agap in

dynamic languages like Javascript, which has few recent studies on the subject.
(Jorge, 2021; Oliveira, 2024)

LLMs have demonstrated great potential in code generation/refactoring.
(Yu, 2023; Hou, 2024)
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Research Objectives and Questions

Objective: To evaluate the effectiveness of LLMs in refactoring test smells in JavaScript.

e RO1: Do LLMs remove test smells without affecting test behavior or coverage?
e R0Q2: Does refactoring using LLMs introduce new test smells or degrade test quality?
e ROQ3: How do LLMs differ in removing specific types of test smells (strengths and limitations)?

e RO4: What is the impact of refactoring using LLMs on structural quality (complexity, size, maintainability)?

Lab-Soft 2025 5
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Pre-Refactoring @

Detection Tools

&

Steel

(Jorge et al., 2021)

16 types of test smells

&

SNUTS.JS

(Oliveira et al., 2024)

16 types of test smells
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Pre-Refactoring (&
Selection of Smell Tests

= Steel

(Jorge et al., 2021)

Smell

Description

Assertion Roulette

Multiple assertions without clear explanation, making it difficult to identify the fault.

Duplicate Assert

Repeated verification of the same condition within the same method,
impairing readability.

Magic Number

Use of literal numbers without explanation, reducing readability.

Lazy Test

Superficial testing that checks multiple functionalities without verifying each
functionality separately and specifically.

Redundant Print

Unnecessary debug printouts, such as console.log() etc...

Table 1. Selected smells from the Steel tool.
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Pre-Refactoring (&
Selection of Smell Tests

Y= SNUTS.JS

(Oliveira et al., 2024)

Smell

Description

Conditional Test Logic

The presence of conditional statements (if-else, loops) within the test method
compromises its effectiveness.

Overcommented Test

The test method is overly detailed, making it difficult to read.

Suboptimal Assert

Using inappropriate assertions to verify conditions reduces clarity.

Test Without Description

The test case lacks a name or descriptive message, making it unclear.

Sensitive Equality

Using comparisons based on toString() or textual representation makes the tests
fragile.

Table 2. Selected smells from the SNUTS.JS tool.
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Pre-Refactoring (&
Selection of Smell Tests

Human Evaluation

To ensure the reliability of detected test smells, a Human Evaluation step is
required. This validation confirms whether each automatically identified smell is
indeed a true smell, enabling the construction of a robust and trustworthy
dataset.
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Pre-Refactoring Q}

Selection of Repositories

Javascript as the main
language 0

HaART 774 repositories

Activity of recent

GitHub
Search (GHS) S JavaScrip; is present in 75% of the
source code.
PerLaor;t%;gg @3 repositories e Open-source \
* ']
/ e Test suite ) -
Script python
10 e Jest Framework
Selected P rep.
Repositories

Repositories used in this study
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Pre-Refactoring o
Selection of LLMS

Business Models using Zero-Shot Prompting

6 @ K

Copilot Amazon Code Claude Code
(GPT-40) Whisperer (Haiku 4.5)

Modelos Open-Weight para Auto-CoT Prompting

I

Lhama-70B DECREEELS StarCoder2-15B
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Refactoring

Run tests
and
coverage

Detecting tests

smells with tools Test method
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—| Prompt and Execution

Smell
classification
D
<> >_

@J » Prompt

Code refactoring

e Zero-Shot - direct instructions without examples. Via VSCode extensions.

e  Auto-CoT: The model generates a structured chain of reasoning before refactoring. Via Hugging Face API

Refactored

e

<>

code
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Post-Refactoring Analysis

'_h, »

</> -
% suurs.ss .!.)“

Refactored Run tests o= -

code and Result
coverage § sgee| Analysis
Detecting test
smells with
tools

Functional Validation: Execution of tests to preserve behavior and code coverage analysis.

Smell Removal: Reapplication of detection tools (SNUTS.JS/Steel).
Structural Quality: Analysis of ASTs for metric extraction:

o Lines of Source Code (SLOC)

o  Cyclomatic Complexity and Cyclomatic Density

o  Halstead Effort and Bugs

o Maintainability Index
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Preliminary Results

Business Models using Zero-Shot Prompting Test Smells Distribution
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RQ1: Do LLMs remove test smells without affecting test behavior or coverage?

Changes observed: Distribution of Failed Smells by Tool

I I cCopilot
I I ‘Whisperer

e Copilot and Whisperer:
17 of 148 (11,48%)

Smells with few or no flaws:

e Test Without Description
e (Overcommented Test

Number of Occurrences

more cosmetic nature

Structural refactoring carries a higher &
risk/impact, while cosmetic 3 &
adjustments are safer. o

Smell Type
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RQ1: Do LLMs remove test smells without affecting test behavior or coverage?

Copilot with 5 cases, altered test coverage; Whisperer with 6 cases:
o Duplicate Assert
o Lazy Test
o Conditional Test Logic

Modest variations (almost always <1%)

Refactoring prioritizes preserving behavior.

Lab-Soft 2025
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RQ2: Does refactoring using LLMs introduce new test smells or degrade test quality?

Refactoring the Lazy Test is the biggest catalyst
for problems.

Implications:

Number of Occurrences

e Refactoring Lazy Tests requires extra
validation.
e Both LLMs face similar limitations.

Distribution of Added New Smells by Tool
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30

Number of Occurrences

RQ@3: How do LLMs differ in removing specific types of test smells

(strengths and limitations)?

Distribution of Removed Smells on Copilot

27 27 I Jl Successful

I I Failure

18

Smell Type

Distribution of Removed Smells on Whisperer

30 -

27

Number of Occurrences

Smell Type

I l Successful
I l Failure
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RQ4: What is the impact of refactoring using LLMs on structural quality
(complexity, size, maintainability)?

e Code volume (Logical SLOC): e Halstead Effort:
o  Consistent increase in both tools (+13.2%).
o Whisperer — higher average growth (14,338 vs. 12,662).

o  Copilot: -19,3% (simplification and removal of
redundancies).
o  Whisperer: practically stable.

e  Cyclomatic complexity:

o  Stable averages(~1.62) e Halstead Bugs:
o  Stable (Copilot 0,017; Whisperer 0,018).

e  Cyclomatic density: e  Manutenibilidade:
o Reduction 14,8% (Copilot) o  Both above 95 (high).
o Reduction 21,4% (Whisperer) o Whisperer: slight drop and greater variability (IOR 1).

— Indicates a better balance between code complexity and size.

Refactoring tends to increase code size but reduce complexity (cyclomatic density and
cognitive effort) - especially in Copilot, while maintaining good maintainability.

Lab-Soft 2025 20




Conclusion

e Copilot (GPT-40): 58.78% success rate in removing smells without altering behavior
e Code Whisperer: 47.30% success rate

e 15% of refactorings alter test behavior

e Stable test coverage in 96% of cases (preservation > expansion)

e New smellsintroduced in 13-16% of cases (especially in Lazy Test)
Next steps

e Increase the number of smells analyzed.
e Use of more prompt models and strategies (Few-Shot, Auto-CoT)

e Expertanalysis of refactored code.

Lab-Soft 2025
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