
PGCC - Pós-Graduação em Ciência da Computação (UEFS)

1

Advisor
Larissa Rocha

UNEB/PGCC-UEFS

Master's student
Gabriel Amaral
PGCC - UEFS

Lab-Soft 2025

Co-Advisor
Eduardo Figueiredo

UFMG

Improving JavaScript Test Quality with Large
Language Models:

Lessons from Test Smell Refactoring

Tests Smells

2Lab-Soft 2025

Inadequate design patterns that arise in
automated test suites.

Efficacy and maintainability of tests

- Slow Testing
- Excessive Configurability
- Interdependent Tests
- Redundant Tests

What are they? Impact

Indicators

Example - Lazy Test

3Lab-Soft 2025

Motivation

Several studies analyze the impact of test smells on the development process.
(Van Deursen, 2001; Bavota, 2016)

Most studies focus on statically typed languages (Java, Scala, C++), leaving a gap in
dynamic languages like Javascript, which has few recent studies on the subject.

(Jorge, 2021; Oliveira, 2024)

LLMs have demonstrated great potential in code generation/refactoring.
(Yu, 2023; Hou, 2024)

4Lab-Soft 2025

Research Objectives and Questions

Objective: To evaluate the effectiveness of LLMs in refactoring test smells in JavaScript.

● RQ1: Do LLMs remove test smells without affecting test behavior or coverage?

● RQ2: Does refactoring using LLMs introduce new test smells or degrade test quality?

● RQ3: How do LLMs differ in removing specific types of test smells (strengths and limitations)?

● RQ4: What is the impact of refactoring using LLMs on structural quality (complexity, size, maintainability)?

5Lab-Soft 2025

Research Design

Figure 1: Research design flow

6Lab-Soft 2025

Pre-Refactoring
Detection Tools

Steel
(Jorge et al., 2021)

16 types of test smells

SNUTS.JS
(Oliveira et al., 2024)

16 types of test smells

Lab-Soft 2025 7

Pre-Refactoring
Selection of Smell Tests

Smell Description

Assertion Roulette Multiple assertions without clear explanation, making it difficult to identify the fault.

Duplicate Assert
Repeated verification of the same condition within the same method,
impairing readability.

Magic Number Use of literal numbers without explanation, reducing readability.

Lazy Test
Superficial testing that checks multiple functionalities without verifying each
functionality separately and specifically.

Redundant Print Unnecessary debug printouts, such as console.log() etc…

Steel
(Jorge et al., 2021)

Table 1. Selected smells from the Steel tool.

8Lab-Soft 2025

Smell Description

Conditional Test Logic
The presence of conditional statements (if-else, loops) within the test method
compromises its effectiveness.

Overcommented Test The test method is overly detailed, making it difficult to read.

Suboptimal Assert Using inappropriate assertions to verify conditions reduces clarity.

Test Without Description The test case lacks a name or descriptive message, making it unclear.

Sensitive Equality
Using comparisons based on toString() or textual representation makes the tests
fragile.

SNUTS.JS
(Oliveira et al., 2024)

Table 2. Selected smells from the SNUTS.JS tool.

 9Lab-Soft 2025

Pre-Refactoring
Selection of Smell Tests

Pre-Refactoring
Selection of Smell Tests

Human Evaluation

To ensure the reliability of detected test smells, a Human Evaluation step is
required. This validation confirms whether each automatically identified smell is

indeed a true smell, enabling the construction of a robust and trustworthy
dataset.

Lab-Soft 2025 10

GitHub
Search (GHS)

774 repositories

93 repositories

10
rep.

1

2

3

Script python

4

5

6

7
Selected

Repositories

Repositories used in this study

11Lab-Soft 2025

Javascript as the main
language

Activity of recent
development

Popularity and
recognition

JavaScript is present in 75% of the
source code.

Open-source

Test suite

Jest Framework

Pre-Refactoring
Selection of Repositories

Pre-Refactoring
Selection of LLMS

Business Models using Zero-Shot Prompting

Copilot
(GPT-4o)

Amazon Code
Whisperer

12Lab-Soft 2025

Claude Code
(Haiku 4.5)

Modelos Open-Weight para Auto-CoT Prompting

Lhama-70B

Deepseek-R1 StarCoder2-15B

Refactoring

Prompt and Execution

● Zero-Shot – direct instructions without examples. Via VSCode extensions.
● Auto-CoT: The model generates a structured chain of reasoning before refactoring. Via Hugging Face API

13Lab-Soft 2025

Post-Refactoring Analysis

● Functional Validation: Execution of tests to preserve behavior and code coverage analysis.
● Smell Removal: Reapplication of detection tools (SNUTS.JS/Steel).
● Structural Quality: Analysis of ASTs for metric extraction:

○ Lines of Source Code (SLOC)
○ Cyclomatic Complexity and Cyclomatic Density
○ Halstead Effort and Bugs
○ Maintainability Index

14Lab-Soft 2025

Preliminary Results

148 occurrences identified in 10 distinct
categories.

Key challenges identified in JavaScript
testing:

● Bad practices in assertions

● Lack of documentation and clarity

● Inadequate structural organization

15Lab-Soft 2025

Copilot
(GPT-4o)

Amazon Code
Whisperer

Business Models using Zero-Shot Prompting

RQ1 : Do LLMs remove test smells without affecting test behavior or coverage?

Changes observed:

● Copilot and Whisperer:
 17 of 148 (11,48%)

Smells with few or no flaws:

● Test Without Description
● Overcommented Test

more cosmetic nature

Structural refactoring carries a higher
risk/impact, while cosmetic
adjustments are safer.

16Lab-Soft 2025

RQ1 : Do LLMs remove test smells without affecting test behavior or coverage?

● Copilot with 5 cases, altered test coverage; Whisperer with 6 cases:
○ Duplicate Assert
○ Lazy Test
○ Conditional Test Logic

● Modest variations (almost always <1%)

● Refactoring prioritizes preserving behavior.

17Lab-Soft 2025

RQ2: Does refactoring using LLMs introduce new test smells or degrade test quality?

 Refactoring the Lazy Test is the biggest catalyst
for problems.

Implications:

● Refactoring Lazy Tests requires extra
validation.

● Both LLMs face similar limitations.

18Lab-Soft 2025

RQ3: How do LLMs differ in removing specific types of test smells
(strengths and limitations)?

19Lab-Soft 2025

Distribution of Removed Smells on Copilot Distribution of Removed Smells on Whisperer

RQ4: What is the impact of refactoring using LLMs on structural quality
(complexity, size, maintainability)?

● Code volume (Logical SLOC):
○ Consistent increase in both tools (+13.2%).
○ Whisperer → higher average growth (14,338 vs. 12,662).

● Cyclomatic complexity:
○ Stable averages (~1.62)

● Cyclomatic density:
○ Reduction 14,8% (Copilot)
○ Reduction 21,4% (Whisperer)

→ Indicates a better balance between code complexity and size.

● Halstead Effort:
○ Copilot: −19,3% (simplification and removal of

redundancies).
○ Whisperer: practically stable.

● Halstead Bugs:
○ Stable (Copilot 0,017; Whisperer 0,018).

● Manutenibilidade:
○ Both above 95 (high).
○ Whisperer: slight drop and greater variability (IQR ↑).

Refactoring tends to increase code size but reduce complexity (cyclomatic density and
cognitive effort) – especially in Copilot, while maintaining good maintainability.

20Lab-Soft 2025

● Copilot (GPT-4o): 58.78% success rate in removing smells without altering behavior

● Code Whisperer: 47.30% success rate

● 15% of refactorings alter test behavior

● Stable test coverage in 96% of cases (preservation > expansion)

● New smells introduced in 13-16% of cases (especially in Lazy Test)

Next steps

● Increase the number of smells analyzed.

● Use of more prompt models and strategies (Few-Shot, Auto-CoT)

● Expert analysis of refactored code.

Conclusion

21Lab-Soft 2025

References

Agile Methodology icon by Riski Ayu from Noun Project

Gear by Chaiconator from Noun Project

Aljedaani, W., Peruma, A., Aljohani, A., Alotaibi, M., Mkaouer, M. W., Ouni, A., Newman, C. D., Ghallab, A., e Ludi, S. (2021). Test smell detection tools: A systematic mapping
study. In Proceedings of the 25th International Conference on Evaluation and Assessment in Software Engineering, páginas 170–180

Cass, S. (2024). The top programming languages 2024. IEEE Spectrum. Accessed: 2025-04-28.

Greif, S. e Burel, E. (2024). The state of javascript 2024: Testing - jest. https://2024.stateofjs.com/en-US/libraries/testing/
. Online; accessed 25 April 2025. Survey run by Devographics from Nov 13 to Dec 10, 2024 with 14,015 responses. Results published on Dec 16, 2024.

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo,David Lo, John Grundy, and Haoyu Wang. 2024. Large language models for software engineering: A
systematic literature review. ACM Transactions on Software Engineering and Methodology (2024).

Jorge, D., Machado, P., e Andrade, W. (2021). Investigating test smells in javascript test code. In Proceedings of the 6th Brazilian Symposium on Systematic and Automated
Software Testing, SAST ’21, página 36–45, New York, NY, USA. Association for Computing Machinery.

Michele Tufano, Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Andrea De Lucia, and Denys Poshyvanyk. 2016. An empirical investigation into the
nature of test smells. In Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering. Association for Computing Machinery, 4–15.

Oliveira, J., Mateus, L., Virg´ınio, T., e Rocha, L. (2024). Snuts.js: Sniffing nasty unit test smells in javascript. In Anais do XXXVIII Simpósio Brasileiro de Engenharia de Software,
páginas 720–726, Porto Alegre, RS, Brasil. SBC.

Silva, A. C. (2022). Identificação e caracterização de test smells em javascript. Instituto de Ciências Exatas e Informática - Pontifícia Universidade, 138:52–81.

Sommerville, I. (2011). Software Engineering, 9/E. Pearson Education India.

Van Deursen, A., Moonen, L., Van Den Bergh, A., e Kok, G. (2001). Refactoring test code. In Proceedings of the 2nd international conference on extreme programming and
flexible processes in software engineering (XP2001), páginas 92–95. Citeseer.

Yu, S., Fang, C., Ling, Y., Wu, C., e Chen, Z. (2023). Llm for test script generation and migration: Challenges, capabilities, and opportunities. In 2023 IEEE 23rd International
Conference on Software Quality, Reliability, and Security (QRS), páginas 206–217.

22Lab-Soft 2025

https://thenounproject.com/browse/icons/term/agile-project/
https://thenounproject.com/browse/icons/term/gears/

CREDITS: This presentation template was created by Slidesgo, and includes icons,
infographics & images by Freepik

Thanks!
Do you have any questions?
gabrielamaralsousa@gmail.com

, Noun Project e Flaticon

23Lab-Soft 2025

Artifacts available at Zenodo
https://doi.org/10.5281/zenodo.17058737

https://bit.ly/3A1uf1Q
http://bit.ly/2TtBDfr
https://thenounproject.com/
https://www.flaticon.com/

